
HP E1438A 

100 MSample/second 

ADC with Filters and FIFO 

User’s Guide
����������	
�������������

�����������	
�
�

���������������������������������������

������������� ����������!��
�������� �����������

"#$$���%���&����'��������������(�� ��������")$*+�)$��	
�
�




�������
The information contained in this manual is subject to change without notice.

Agilent Technologies makes no warranty of any kind with regard to this manual, 
including, but not limited to, the implied warranties of merchantability and fitness for a 
particular purpose. Agilent Technologies shall not be liable for errors contained herein or 
direct, indirect, special, incidental, or consequential damages in connection with the 
furnishing, performance, or use of the material.

TRADEMARKS

UNIX® is a registered trademark in the United States and other countries.

Windows®, MS Windows®, Windows NT® are U.S. registered trademarks of Microsoft 
Corporation.

WARRANTY

A copy of the specific warranty terms applicable to your Agilent Technologies product 
and replacement parts can be obtained from your local Sales and Service Office.

This document contains proprietary information which is protected by copyright. All 
rights are reserved. No part of this document may be photocopied, reproduced or 
translated to another language without the prior written consent of Agilent Technologies, 
Inc.. This information contained in this document is subject to change without notice.

Use of this manual and CD-ROM supplied for this pack is restricted to this product only. 
Additional copies of the programs can be made for security and back-up purposes only.

RESTRICTED RIGHTS LEGEND

Use, duplication or disclosure by the U.S. Government is subject restrictions as set forth 
in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause 
in DFARS 252.227-7013

Agilent Technologies, Inc.

395 Page Mill Road

Palo Alto, CA 

94303-0870 USA

Rights for non-DOD U.S. Government Departments and Agenciesa are set forth in FAR 
52.227-19(c)(1,2).

,�%-��� �������������������� ����������!��
�
��



��������
�����������������������������������
 ������������ ���������
This product, the HP E1438A, is being introduced at the time of transition from Hewlett-
Packard to Agilent Technologies. While the name of the product and external aspects of 
the module reflect Hewlett-Packard, we have presented all the libraries with the 
VXIplug&play designation for Agilent Technologies. This means that you may develop 
any programs and not need to alter them for subsequent upgrades or for new, similar 
products which will be released as Agilent Technologies products.
iii



 ����� �����������!�����
The HP E1438A 100 Msample/second Analog-to-Digital Converter with Filtering and 
Memory provides high precision digitizing for time and frequency domain applications 
along with signal conditioning, filtering, and memory. The module plugs into a single C-
size slot in a VXI mainframe.

��������	�
����� �

������	����� ������

������������� ��������� �����������������!���

"������#��� �����������$��!

�����#�%� �&�����'&(����

#���)*
���������� �&�����

+,������"������ +�-����.�!������

+,��*�/�!������ #�%�����������

"��� 
0���������%�������
��



"����#���!���"���������� �����
The following items are included with your HP E1438A

Hardware:

• HP E1438A ADC, C-size VXI module

• CD-ROM for Windows and HP-UX setup

Software

• CD-ROM for installation

��������	�	
������������������	����	�
• The HP E1438A VXIplug&play libraries and drivers

• The HP E1438A HP-VEE header files and WinHelp

• Soft Front Panel program for the HP E1438A with source files, for Windows 
only

• Web-based help for the HP E1438A

• AGDSP function library and online help

• Example programs and source files

• Microsoft Visual C++ C-library and source files

• Microsoft Visual Basic header files

���
������
�������������	����������
• Libraries and drivers

• Web-based help for the HP E1438A

• AGDSP function library and online help

• Example programs and source files

Documentation

• HP E1438A Installation and Service Guide

• Online documentation available after software installation:

• HP E1438A User’s Guide in PDF format (this document)

• Web-based help files providing operational information and programmer’s 
reference

• WinHelp files for the HP E1438A Soft Front Panel

• WinHelp for VEE
v



$�� ����%���
This book documents the HP E1438A module. It provides

• hardware installation information

• software installation information

• getting started information

• operational information

• programmer’s reference

• replaceable parts

&�����'���	��������
Installation and Service information is provided as a printed document as well as in this 
PDF document. 

After running the setup program the following documentation is available:

• Web-based help files are available from the Start menu.

• Winhelp for the Soft Front Panel is available from the application.
��



Contents
1 Installing the HP E1438A

To inspect the HP E1438A - - - - - - - - - - - - - - - - - - - - - - - - 2

To install the HP E1438A- - - - - - - - - - - - - - - - - - - - - - - - - 3

To store the module- - - - - - - - - - - - - - - - - - - - - - - - - - - - - 6

To transport the module  - - - - - - - - - - - - - - - - - - - - - - - - - 6

2 Getting Started with the HP E1438A

Introduction  - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 8

System Requirements  - - - - - - - - - - - - - - - - - - - - - - - - - - - 9

To install the Windows VXIplug&play drivers for the 

HP E1438A in Windows - - - - - - - - - - - - - - - - - - - - - - - - - - 10

To install the HP-UX C-language drivers for the HP E1438A in 

HP-UX systems: - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 11

To use the Resource Manager  - - - - - - - - - - - - - - - - - - - - - 12

To use the program group (Windows) - - - - - - - - - - - - - - - 13

To use the VXIplug&play Soft Front Panel (SPF)- - - - - - 14

To use the HP-UX libraries  - - - - - - - - - - - - - - - - - - - - - - - 15

To use the example programs  - - - - - - - - - - - - - - - - - - - - - 16

3 Using the HP E1438A

HP E1438A overview - - - - - - - - - - - - - - - - - - - - - - - - - - - - 20

Programming the HP E1438A- - - - - - - - - - - - - - - - - - - - - - 21

The measurement loop- - - - - - - - - - - - - - - - - - - - - - - - - - - 23

Frequency and filtering - - - - - - - - - - - - - - - - - - - - - - - - - - 26

Using clock and sync  - - - - - - - - - - - - - - - - - - - - - - - - - - - - 27

Managing multiple modules - - - - - - - - - - - - - - - - - - - - - - - 28

Transferring data- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 34

4 HP E1438A Programmer’s Reference

Introduction  - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 36



��������
Functions listed by class  - - - - - - - - - - - - - - - - - - - - - - - - - 37

Functions listed by functional group  - - - - - - - - - - - - - - - - 41

Functions listed alphabetically- - - - - - - - - - - - - - - - - - - - - 47

Equivalent numeric values for variables  - - - - - - - - - - - - - 145

Commands which halt active measurements- - - - - - - - - - - 149

Error messages  - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 150

Default values  - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 152

VXIplug&play Syntax Quick Reference - - - - - - - - - - - - - - 154

5 Module Description

Front Panel Description - - - - - - - - - - - - - - - - - - - - - - - - - - 160

VXI backplane connections  - - - - - - - - - - - - - - - - - - - - - - - 161

Block diagram and description - - - - - - - - - - - - - - - - - - - - - 163

6 Replacing Assemblies

Replaceable parts- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 170

Technical Specifications

Glossary

INDEX
��



1

1 Installing the HP E1438A



�����		
�������� ������
To inspect the HP E1438A
To inspect the HP E1438A

The HP E1438A single channel VXI ADC Module was carefully inspected both 
mechanically and electrically before shipment. It should be free of marks or scratches and 
it should meet its published specifications upon receipt. 

If the module was damaged in transit, do the following:

• Save all packing materials.

• File a claim with the carrier

• Call your Hewlett-Packard sales and service office.
2



�����		
�������� ������
To install the HP E1438A
To install the HP E1438A

Caution To protect circuits from static discharge, observe anti-static techniques 

whenever handling the HP E1438A VXI ADC Module

�� �
��������� �!���������
���

���
���	��������������
������������������
�
"� �
�
�����	���������
� �!���������
�������
��� #�$%&�������
�

'�
��� #�$%&�������
(	�������)�	��
�
�*
	�#+,��
*
��������������
������
�
���
����
��������	��
������������	�#+,��
*
������������
������
����
����
���
�����	��������#*
��������
��	������
�������)�	��	�-
�
������
*
������������
	�
��������������
.�����
�������
�����
		���
����
�������)�
��!�����������)
��	����
��
�������)�	/�	
�
�����0��
���	���	����
����
��������
��
��������
�������
�
�*�
���������
��!����
� �!�)�	��	��	
�/���.�������������
	������)
��
���
��)���
��
������
�����)
����
����������*����)�
�	����

%� �	������	�����	��
����*
�����	�����������/�	
����
�������������
		�����������
�����	�����������
��� #�$%&���1�

���
�����	�������������
��
.����
�2�#����
�����
������
�	�	�
����	����*
������3�
�������������
		��'�
����������
������
	
�������	���44�4444�1�5"2�
3



�����		
�������� ������
To install the HP E1438A
�
�

������	
������
4



�����		
�������� ������
To install the HP E1438A
$� �
����
���������
(	���
��	�������������142�

Caution Installing or removing the module with power on may damage components in the 

module.

6� ����
���
������
(	������
��
	�1�������)�����2��������
������
�����
	������
�
	����

7� ����
���
������
��������
���������
���������
������
�����
��	�������������
��
�)��-���
�����
����	��8�-
�	��
���
������
�	���
	����	�������������������
�
��	
�����9
.����������
*
�	���
��
		
�������
�������
���������
��

:� ���������
������
(	���������
�������
���������
����		�	��	������
������
(	�
����*
����������	��
�	�

���
��������

����
������

�	�����
�������
�����
5



�����		
�������� ������
To store the module
To store the module

Store the module in a clean, dry, and static free environment.

For other requirements, see storage and transport restriction in “Technical 
Specifications”.

To transport the module

; ���-��
���
������
��	������
��������������������-�����������-��������
����
���������
�����������-������

; !���
����������
������
�����
��
������-��������	
�*��
/���������������
	���)����
��
�����������

• Type of service required

• Return address

• Model number

• Full serial number

In any correspondence, refer to the module by model number and full serial number.

• Mark the container FRAGILE to ensure careful handling.

• If necessary to package the module in a container other than original packaging, 
observe the following (use of other packaging is not recommended):

• Wrap the module in heavy paper or anti-static plastic.

• Protect the front panel with cardboard.

• Use a double-wall carton made of at least 200-pound test (32 ECT) material.

• Cushion the module to prevent damage. For example, several layers of plastic 
bubble wrap is usually sufficient.

Caution Do not use styrene pellets in any shape as packing material for the module. The 

pellets do not adequately cushion the module and do not prevent the module 

from shifting in the carton. In addition, the pellets create static electricity which 

can damage electronic components. 
6



(

2 Getting Started with the HP E1438A



����
������������
������� ������
Introduction
Introduction

This section helps you get your HP E1438A running and making simple measurements 
without programming. It shows you how to install the software libraries and how to run 
the Soft Front Panel program. It also introduces you to the example programs. Two 
versions of the Host Interface Library are available. One is the Windows Library which 
communicates with the hardware using VISA (Virtual Instrument Software Architecture). 
VISA is the input-output standard upon which all the VXIplug&play software components 
are based. The second version is the HP-UX 10.2 C-language Host Interface Library which 
also uses VISA.

This section assumes you have already installed the module in the VXI mainframe as 
shown in the previous chapter. It also assumes that you have installed a VXI interface 
according to the manufacturer’s instructions.

Note Be sure to read the readme file for important up-to-date software installation 

information.
8



����
������������
������� ������
System Requirements
System Requirements

System Requirements (Microsoft Windows)

• A Pentium-class personal computer:

• Microsoft Windows 95/98, or NT.

• One of the following interfaces:

• HP FireWire � HP E8491B IEEE-1394 PC Link to VXI

• National Instruments PCI MXI-2

• Other VISA compliant VXI interface

• VISA (Virtual Instrument Software Architecture) library

• The computer must have a CD ROM drive for the installation media

• A Web browser

System Requirements (HP-UX)

• One of the following workstations:

• An HP V743 VXI-embedded workstation

• A stand-alone HP-UX workstation with a MXI interface

• The workstation must have a CD ROM drive for installation media

• VISA (Virtual Instrument Software Architecture) library

• HP-UX (version 10.2 or later)

• A Web browser
9



����
������������
������� ������
To install the Windows VXIplug&play drivers for the HP E1438A in Windows
To install the Windows VXIplug&play drivers for 

the HP E1438A in Windows

This procedure assumes that you have already installed a VISA (Virtual Instrument 
Software Architecture) library. If not, you can still install these drivers but you will 
receive an error message reminding you to install the VISA library.

�� !�	
�����
�+<���)
�
���=�� #�$%&���44�8����
9	
�������<�+��*
��
�>
"� ?�����
���������������@������	@	
���
.


��
�
��������
�
	
��	���
����*
��������������
�	
���+<�
%� '�
�	
�����������	-	������������������������
���
����
�����������'�
�

�
���������
�����������	��
����
��
��
$� ���������)�.��	-	������������������	�����	������	�������	

'��	���
��
	�������������������
��=�A#�$%&>����������
� .������
������
������������
	�

• A shortcut to run the HP E1438A Soft Front Panel

• A shortcut for the HP E1438A web-based online help file

• A shortcut for the PDF version of the HP E1438AUser’s Guide

• A shortcut for the AGDSP web-based online help file

• Several shortcuts for example programs

• A shortcut for a readme file

6� ���
���
����
�����)
���	���
���!��	�/�)
�	��
�����
�������������������
�
��	��������	�

Note Future upgrades will be distributed on the Web. To check your current revision 

run the Info Utility or check Help/About in the Soft Front Panel program.

To check for new revisions access the Agilent Technologies Web page 

http://www.agilent.com/ and search for "E1438"
10



����
������������
������� ������
To install the HP-UX C-language drivers for the HP E1438A in HP-UX systems:
To install the HP-UX C-language drivers for the 

HP E1438A in HP-UX systems:

The e1438.depot file is in SD-UX format. To install the filesets:

�� ,�������	�����
"� !�	
�����
�+<���)
�
���=�� #�$%&���44�8����
9	
�������<�+��*
��
�>�

�������
�+<����*

%� #.
���
���
�	���	�����1/usr/sbin/swinstall2����������	�

% swinstall
$� �	
���
����
�����*
��
��	������	�������
����
�

�����9��.9
�$%5��

��
�
��������
�
	
��	���
����*
��������������
�	
���+<�

Be sure to read the README file which contains important information on installation, 
viewing online help, and compiling example programs.

All files are installed in subdirectories under /opt/vxipnp.

Note Future upgrades will be distributed on the Web. To check your current revision 

run the Info Utility.

To check for new revisions access the Agilent Technologies Web page 

http://www.agilent.com/ and search for "E1438"
11



����
������������
������� ������
To use the Resource Manager
To use the Resource Manager

The Resource Manager is a program from your hardware interface manufacturer. It looks 
at the VXI mainframe to determine what modules are installed. You need to run it every 
time you power up. If you get the message: "VISUCCESS_DEVICE_NPRESENT" then run 
the Resource Manager.

Before running the HP E1438A software make sure that your hardware is configured 
correctly and that the Resource Manager runs successfully. Before using your 
measurement system, you must set up all of its devices, including setting their addresses 
and local bus locations. No two devices can have the same address. Usually addresses 0 
and 1 are taken by the Resource Manager and are not available.

For more information about the Resource Manager, see the documentation with your 
hardware interface.

Note Most Resource Managers will recognize the manufacturer and model number of 

the HP E1438A but if your interface requires that you enter this information 

manually, use the following:

Manufacturer number: 4095 (Hex FFF)

Model number: 622 (Hex 26E)
12



����
������������
������� ������
To use the program group (Windows)
To use the program group (Windows)

If you chose to install the program group by the default method during the installation 
procedure you have a shortcut for a program group similar the one below. Access it 
through the Start button:
Programs \ Vxipnp \ age1438

This program group contains shortcuts which access the Soft Front Panel program, the 
User’s Guide, online help, and example programs. The following pages provide an 
overview of these items.

If you did not choose to install the program group, executable files for each of the items 
represented by group shortcuts are available in the drive:\vxipnp directory and its 
subdirectories.
13



����
������������
������� ������
To use the VXIplug&play Soft Front Panel (SPF)
To use the VXIplug&play Soft Front Panel (SPF)

The the best place to start to explore the capabilities of the HP E1438A in a Windows 
environment is with the Soft Front Panel. The Soft Front Panel can be useful for checking 
your system to make sure that is installed correctly and that all of its parts are working. 
You can also use it to make actual measurements, since it accesses most of the 
HP E1438A’s functionality.

Select the  shortcut in your program group to start the program. 
This assumes you have already installed all required hardware and drivers (including 
VISA) and have run the configurator and Resource Manager required by your hardware 
interface.

If prompted for the resource descriptor, use the default "VXI::192" unless the logical 
address of the HP E1438A has been changed from its default setting of 192. If it has been 
changed then type the appropriate logical address instead of 192. Press OK.

Note You can also run the HP E1438 Front Panel in a simulation mode without an 

HP E1438A module, a hardware interface, or VISA libraries by typing "sim" in 

place of the resource descriptor.

The HP E1438 Front Panel Help, available from the Soft Front Panel Help menu, describes 
the capability of the Soft Front Panel and has links to functions which control and define 
many of the parameters.

The source files for this program are provided for you to use as sample code.
14



����
������������
������� ������
To use the HP-UX libraries
To use the HP-UX libraries

The README file is located at:

/opt/vxipnp/hpux/age1438/README

It contains the following information:

; �*
�*�
�������
����
������	�������

; ����������
		���
������
��
�
; �������������
�
.���
�������	
; �����������������������
���
�
.���
�������	�
15



����
������������
������� ������
To use the example programs
To use the example programs

Several example programs are included to perform useful tasks for you and to serve as a 
basis for your own programs. When you installed your HP E1438A Windows or HP-UX 
libraries and drivers using the setup program or utility, you also installed executable and 
source code files for several useful example programs. The programs demonstrate 
programming the module with "C", Microsoft Visual Basic, and HP-VEE.

The executables for these examples require a HP E1438A and, for Windows, 
VXIplug&play support; in other words they will not run in simulation mode like the 
HP E1438A Soft Front Panel program.

shortcuts for the executables appear in the age1438 Windows program group if you chose 
to add it during setup.

In Windows environments executable files and source code for the Microsoft Visual Basic 
examples are installed in the drive:\vxipnp\win[95|NT]\age1438\vb directory. The VEE 
examples are in the ...\age1438\vee directory, and "C" examples are in the 
...\age1438\msc\examples directory.

In the HP-UX environment executable files and source code for the C-language examples 
are installed in /opt/vxipnp/hpux/age1438.

The group of programs described here may be supplemented with additional programs 
later which will be described in the online help or readme file.

��)����*�(+�,�

This is about the simplest practical complete program using the HP E1438A and functions 
like an AC voltmeter. It is written in Visual Basic.

��)����+�,�

This is a console version of acvolts_32.exe, written in Microsoft Visual C++.

%����	���*�(+�,�

This performance benchmark program is really more of a utility than an example, 
although source code is provided. It allows users to measure data transfer rates and 
command processing times on their system without having to write new code. The utility 
is written in Visual Basic.


����+�,�

This is a console version of Benchmark_32.exe, written in Microsoft Visual C++.

-�������*�(+�,�
16



����
������������
������� ������
To use the example programs
This example shows how to synchronize two modules to achieve simultaneous sampling, 
filter decimation, and matched local oscillator phase. It is written in Visual Basic.

��.�+�,�

This example shows how to retrieve option and revision information from an HP E1438, 
and it doubles as a handy utility. It is written as a console program in Microsoft Visual 
C++.

�������/�+�,�

This example shows how to set up and trap a VXI interrupt to indicate an error condition 
in the HP E1438A. It is written as a console program in Microsoft Visual C++.

���/�+)��

This is a simple one-channel example written in VEE. In order to view or execute it, the 
VEE programming environment must be installed on the system.
17



����
������������
������� ������
To use the example programs
18



�

3 Using the HP E1438A



��
�������� ������
HP E1438A overview
HP E1438A overview

���
�� 
���!

��"#$
��%
���!

�	��&
'��������

(����
)��������

�����*���� ����+�	���
,�	��

����	���
�)�

 ���
���
)���������
,�	�����

,�,!
����-

���
.*�
��������

����	
.*�
��������

�������*	�
�	��&

�������*	�
�-��

��
�
/

��
&�
	�
��

01�
�	��&23��

01�
(����

���	��
��

���
��!�4

���
�56�
20



��
�������� ������
Programming the HP E1438A
Programming the HP E1438A

The HP E1438A is shipped with software and documentation to support a broad set of 
choices of controllers, I/O interfaces, programming languages, and operating systems. By 
virtue of its compliance to the VXIplug&play standard, the HP E1438A is most easily 
controlled in an environment conforming to one of the supported VXIplug&play 
frameworks. However, support is also supplied for other common hardware and software 
environments. The relationship among the various levels of programming the HP E1438A 
is shown in the diagram below.

 

Windows framework

The primary development environment supported by the HP E1438A is the VXIplug&play 
WIN95/98, and WinNT framework specifications. It requires the following resources prior 
to the installation of the HP E1438A:

• An embedded or a stand-alone Pentium-class PC

• Microsoft Windows 95/98 or NT

• VISA interface library

• VISA compatible hardware interface

• Microsoft Visual C++ and/or Microsoft Visual Basic development system.

Additional details on the WIN framework can be found in the VXIplug&play VPP-2 

System Frameworks Specification, Revision 2.0. 

In addition to the C source code files, the HP E1438A includes compiled libraries, 
example programs, an interactive soft front panel program, online help files, and an 
installation program. The interactive soft front panel program allows the HP E1438A to be 
turned on, verified and used for simple tasks without writing any user programs.

������
3�������

�+,*������
��.�-

7�6��+8�

�
���������
��+8�
7������
9
���*�	
/����
21



��
�������� ������
Programming the HP E1438A
Compliance with the VXIplug&play WIN framework allows users of the HP-VEE 
graphical programming system to control the HP E1438A from that environment. This is 
accomplished by using the capability of HP-VEE to call functions in the C-library. 
Documentation and support for that capability is included with HP-VEE and is not 
addressed further in this document.

HP-UX, Series 700 environment

The HP-UX environment is supported for developers who prefer programming tools 
provided on the UNIX operating system. The system requirements include:

• HP series 700 workstation

• HP-UX operating system 10.2

• MXI interface

• C-language programming system.

In addition to the source code files, the HP E1438A includes compiled libraries, example 
programs, online help files, and an installation utility.

C programming

The HP E1438A is shipped with a source library of C-functions which can be called from 
user programs. This elevates the interface above the register level so the programmer 
does not have to be concerned with such things as register addresses and packing or 
splitting parameters into 16-bit register lengths. The library includes ANSI compliant 
source code files with all machine dependent code constrained to a single source file. By 
re-writing selected portions of the machine.h file, the programmer can create and 
compile an HP E1438A library which is compatible with virtually any development 
environment using the C language. The most common reason for re-writing machine.h is 
to accommodate I/O libraries other than VISA. In some cases the library may need merely 
to be re-compiled to target a different processor type for the host computer.

Porting the HP E1438A library to a different computer environment is likely to be a fairly 
straight forward task. However, some of the higher level tools shipped with the 
HP E1438A may not be as easily ported. The interactive soft front panel and some 
example programs include human interfaces which depend on certain display and 
keyboard support which may be system dependent. Although source code is included for 
these applications, porting them to a different environment may present a greater 
problem than porting the library itself. The installation utilities are specifically targeted to 
operate on the supported development environments and may not be available in other 
environments.
22



��
�������� ������
The measurement loop
The measurement loop

The measurement loop progresses through four states. The transition from one state to 
the next is tied to the transition of the Sync signal. The effect of the Sync signal is 
summarized in the following diagram representing the four possible states of an 
HP E1438A module.

In the Idle state the HP E1438A places no new data into the FIFO output buffer memory 
although previously measured data is retained in the buffer memory and is available for 
output via the VME or local bus I/O ports. The module stays in the Idle state until the Sync 
line is asserted.

Upon entering the Arm state the HP E1438A clears old data. It remains in the Arm state 
until the Sync signal is released. If an HP E1438A is programmed with a pre-trigger delay, 
it collects enough data samples to satisfy this pre-trigger delay, and then releases the Sync 
line. If no pre-trigger delay has been programmed, the module releases the Sync line 
immediately. When all HP E1438As in a system have released the Sync line the module 
moves to the Trigger state.

Upon entering the Trigger state an HP E1438A, if it is programmed with a pre-trigger 
delay, continues collecting data into the FIFO, discarding any data prior to the pre-trigger 
delay. An HP E1438A remains in the Trigger state until the Sync line is asserted. The Sync 
line may be asserted by a direct command or by any HP E1438A which encounters a 
trigger condition and is programmed to assert the Sync line. When the Sync signal is 
asserted, all modules synchronously move to the Measure state.

In the Measure state the HP E1438A continues collecting data and sends the data saved in 
the FIFO memory to the selected I/O port, starting with the sample indicated by the 
trigger arrival, offset by the number of samples specified by the trigger delay. This data 

���� ���

��	
��� ������

�

���

����	
�
������������

����	
�

�

���

������������	��	�

���������������	

���������	��	������������

�	�����������	��	�

����������	��	�

���������	��	�
��	������	���������	��	�
23



��
�������� ������
The measurement loop
transfer continues until all data has been transferred or until the module meets the 
criteria for returning to the Idle state imposed by block mode or continuous mode 
operation constraints.

Modules programmed for block mode operation assert the Sync line until a complete 
block of data, including any pre-programmed pre- or post-trigger delay, has been collected 
and is available to the I/O port. The module then releases the Sync line. The module 
returns to the Idle state when the block of data has been collected.

In continuous mode a module releases sync immediately but moves to the Idle state only 
if explicitly programmed to do so or if the FIFO data buffer overflows because data 
cannot be read from the I/O port fast enough.

The measurement loop in multi-module systems

The following rules generally apply to transitions between states when multiple modules 
share a Sync signal:

• If any one module asserts the Sync line a synchronous state transition occurs for all 
modules in a system.

• All modules in a system must have released the Sync line in order to bring about a 
synchronous transition to Trigger state.

• In block mode each module releases the Sync line after its block of data has been 
collected. Immediately upon entering the Measure state in continuous mode each 
module releases the Sync line. It continues to collect and output data until it is 
programatically signaled to stop or until the FIFO overflows. With the Sync line 
released it is then possible to change the center frequency for one or multiple modules 
without interrupting the measurement. See “Synchronizing changes in multi-module 
systems” on page 32.

• A module may be programmed explicitly to inhibit its transition to the Arm state 
despite Sync transitions.

• In addition to controlling the progression through the four module states, the Sync 
signal is used to synchronize the decimation counters and local oscillators of multiple 
HP E1438A modules.

Delay and phase in triggered measurements

It is important to note that the trigger delay is specified in terms of output samples. When 
using the digital filters within the HP E1438A to reduce the sample rate, there are multiple 
ADC samples corresponding to each output sample. In order to determine the 
relationship between the first output sample of a block and the actual ADC sample where 
the trigger occurred, you must read the actual delay from the module using age1438_

trigger_delay_actual_get.

This relationship varies from block to block, and is a function of the particular value of 
counters within the digital filters at the time the trigger occurs. Thus the actual delay from 
the trigger event is the delay from age1438_trigger_delay_get multiplied by 2^sigBw 
(from age1438_filter_bw_get if filter decimation is used, or 2^(sigBw-1) if filter 
decimation is off). This value is then added to the value returned by age1438_trigger_

delay_actual_get. The result is in periods of the ADC sample clock. Special 
considerations apply in multi-module systems. See “Trigger and phase in multi-module 
systems” on page 33.
24



��
�������� ������
The measurement loop
When doing a zoomed measurement, it may also be helpful to know the phase of the 
digital LO at the point in time when the trigger occurred, since the LO is also running 
continuously and it will have an arbitrary phase relationship with the trigger event. 
age1438_trigger_phase_actual_get returns the phase of the LO at the trigger point. The 
LO phase could be used in time domain averaging of blocks, or other operations involving 
zoomed blocks of data, so that the varying phase of the LO can be removed from the 
calculation.
25



��
�������� ������
Frequency and filtering
Frequency and filtering

The HP E1438A’s center frequency is normally set at zero (baseband measurement). 
However, you may set the center frequency to a non-zero value in order to examine a 
narrower span away from baseband (zoom measurement). The frequency band of 
interest, represented by digitized time data samples from the ADC, is mixed with the 
HP E1438A digital LO, a complex exponential, at the desired center frequency. As a result 
the frequency band of interest in the input signal is shifted to a complex signal centered 
around DC. See “Synchronizing changes in multi-module systems” on page 32 for special 
considerations with respect to changing the center frequency in multi-module systems.

The default filter for HP E1438A measurements is an analog anti-alias filter. However, you 
may further isolate the frequency band of interest for more detailed analysis by using 
digital filtering. A decimating digital filter simultaneously decreases the bandwidth of the 
signal and decreases the sample rate. The built-in digital filters conform to the Nyquist 
sampling theorem which guarantees that the output sample rate may be reduced by the 
same factor as the signal bandwidth reduction while still maintaining a complete 
representation of the underlying bandlimited signal.

For each octave step in bandwidth reduction (except for the first octave) the HP E1438A 
digital filters automatically reduce the data rate by discarding alternate output samples. 
This process, called decimation, results in an output sample rate which is nominally four 
times the signal bandwidth whenever sigBw>0. This is still double the theoretical rate 
necessary to fully characterize the band limited signal. However, because the digital 
filters do not have a perfectly abrupt cutoff, the sample rate cannot be reduced to the 
theoretical limit without some aliasing of signals in the transition frequency band of the 
filters. In many applications this limited aliasing potential is not important. For this 
reason you may optionally choose to apply a final factor-of-two decimation. See the 
Technical Specifications for detailed information on the digital filter shapes.

The decimation process used to reduce the output sample rate is driven from a 
"decimation counter" which keeps track of which samples to save and which ones to 
discard for each of the octave bandwidth reduction filter stages. In multi-module systems 
where synchronous sampling is required, the decimation counters in all the modules must 
be synchronous with each other. See “Synchronizing changes in multi-module systems” 
on page 32.
26



��
�������� ������
Using clock and sync
Using clock and sync

The following diagram shows the flow of clock and sync signals:

���
��!�4

�)�
��!�4

���
�56�
�������*	�
�-��
��/


�������*	�
�	��&
��/

�)�
)���)03

,3!6(
��60�
��!�4

��/
��!�4
!8(�8(

���
��!�4
!8(�8(

�)�
��!�4
���!
���!
,30:

�56�
��!�4

0�(
�	��&23��
/6�

30,0306�0
��!�4
30,0306�0
�30����03

�56�
!8(�8(
�56�
)�30�(�!6
27



��
�������� ������
Managing multiple modules
Managing multiple modules

Sharing Reference and Sync signals in multi-module systems

The HP E1438A supports synchronous operation among multiple HP E1438As by using a 
shared ADC clock and Sync signal to drive all the modules in a system. The shared Sync 
signal is used to synchronize critical operations including arming, triggering the beginning 
of data collection, setting a common phase of the local oscillators for zoom operation, 
and forcing concurrent output sample times when decimation is used. The Sync line 
transitions are constrained to not occur during the critical (setup and hold) regions of the 
external reference. The reference operates at 1/10 of the internal ADC clock, typically 10 
or 10.24 MHz for a HP E1438A module. The reference can be either generated within the 
master module, or an external reference can be fed into the master module through a 
front panel BNC.

Clock distribution

When shared, the reference clock and sync lines are distributed among modules either on 
the VXI backplane using the ECL Trigger lines, or on the front panel using the SMB 
Clock/Ref extender connectors. When VXI backplane distribution is used with more than 
one VXI mainframe, the front panel Intermodule Clock and Sync connectors can be used 
to distribute clock and Sync lines from one mainframe to another.

Since the Sync transition timing relative to the reference input is critical, the module 
driving the Sync line should ideally be the same one identified as the master. However, 
when using backplane distribution, any HP E1438A in the same mainframe as the master 
can drive the Sync line.

When using the multi-sync mode of operation, the selection of front panel or backplane 
distribution of reference and Sync signals involves the following considerations:

• Backplane distribution requires the use of the ECL Trigger lines on the backplane, 
which are then unavailable to other modules.

• The overall time skew between the arrival of ADC clock edges is smaller when using 
backplane distribution, particularly if the master (or buffer) module is physically 
located in the center of the group of HP E1438A modules.

• Backplane distribution is more susceptible to pickup of jitter on the ADC clock from 
other digital activity on the VXI backplane. The extent of this pickup depends on the 
mainframe and on the other modules in the mainframe. One important step in 
reducing this pickup is to disable, whenever possible, the 10 MHz VXI clock generated 
by the slot-0 controller.

• For backplane distribution make sure that all modules conform to VXI specification 
1.4 or later with regard to their attachment to the ECL Trigger lines. See the 
HP E1438A Technical Specifications for the clock jitter (phase noise) specification 
degradation using backplane distribution.
28



��
�������� ������
Managing multiple modules
• Front panel distribution requires the use of two short, equal length cables with SMB 
connectors between modules. In addition, unused SMB connectors on modules being 
used for front panel distribution must be terminated in 50 ohms.
29



��
�������� ������
Managing multiple modules
Managing multi-module systems

Note The  symbol indicates a 50 ohm terminator, which is required on unused SMB 

connectors in systems using front panel distribution

Module #1 � “Rear master, internal 
reference” on page 61

Module #2 � “Rear slave, phase 
locked to master” on page 62

Module #1 � “Front master, phase 
locked to external reference” on page 
60

Module #2 � “Rear slave, phase 
locked to master” on page 62

������	
�	��&
���
�56�
�����.*����
*����
���
.��&�	���
0��
�����
	����#

01����	
�������
���
�56�
�����.*����
*����
���
.��&�	���
0��
�����
	����#

�	
��

�

��
��
�
		�


�	
��

�

��
��
�
		�


/��&�	��� /��&�	���
��
��%
��;*���-
�������

Module #1 � “Front master, internal 
reference” on page 59

Module #2 � “Front slave, phase 
locked to master” on page 60

Module #1 � “Front master, phase 
locked to external reference” on page 
60

Module #2 � “Front slave, phase 
locked to master” on page 60

������	
�	��&
���
�56�
�����.*����
*����
����
����	
��/
�	��&
���
�56�

�1�����
�����������#

01����	
�������
���
�56�
�����.*����
*����
����
����	
��/
�	��&
���
�56�

�1�����
�����������#

�	
��

�

��
��
�
		�


�	
��

�

��
��
�
		�


��
��%
��;*���-
�������
30



��
�������� ������
Managing multiple modules
Managing multi-mainframe systems

Module #1 � “Front slave, phase 
locked to master” on page 60

Module #2 � “Front master, internal 
reference” on page 59

Module # 3 � “Front slave, phase 
locked to master” on page 60

Module #4 � “Front slave, phase 
locked to master” on page 60

������
�	��&
���
�56�
�����
�����	
���*	��
���
����
����	
�����.*����#

�	
��

�

��
��
�
		�


Module #1 � “Front slave, phase 
locked to master” on page 60

Module #2 � “Front master, internal 
reference” on page 59

Module #3 � “Front slave, phase 
locked to master” on page 60

Module #4 � “Front slave, phase 
locked to master” on page 60

���
��������
� ���
��������
/
�	��&
���
�56�
�����.*����
*����
����
����	

�1�����
�����������
������
���
.������
���������#

�	
��

�

��
��
�
		�


�	
��

�

��
��
�
		�


31



��
�������� ������
Managing multiple modules
Synchronizing changes in multi-module systems

Multi-module systems require special treatment with respect to timing of frequency and 
filter changes. Center frequency changes may involve synchronizing the local oscillators 
of all modules in a system. Digital filter changes in multi-module systems require that the 
decimation counters be synchronized.

Calling the following functions voids synchronized multi-module setups:

age1438_clock_setup and low-level clock setup functions
age1438_clock_recover

age1438_input_autozero

age1438_input_range_auto

age1438_self_test

age1438_state_recall

Special considerations apply to the measurement loop. See “The measurement loop in 
multi-module systems” on page 24.

Synchronous digital filter changes

In multi-module systems where synchronous sampling is required, the decimation 
counters in all the modules must be synchronous with each other. This condition can be 
forced by preparing each module in the system in advance. Any measurement in progress 
is terminated at this time and the module is placed in the Idle state. After each module is 
prepared, the next sync line transition causes the digital decimation counter to be reset 
and started at the same time. Once this is done the decimation counters stay synchronized 
as long as the same ADC clock is used.

If you also intend to change the center frequency along with the digital filters, you should 
synchronize the digital filters first. Otherwise the center frequency phase becomes 
unsynchronized when the digital filters are changed.

Synchronous center frequency changes

In multi-module systems you may prepare each module in advance of a frequency change, 
then perform the change synchronously by asserting the sync line. This preserves the 
phase relationship of the local oscillators for all modules in the system. Certain special 
considerations apply to multi-module frequency changes:

• If all modules in a system are in the Idle state when the Sync line transition occurs, the 
LO frequency is updated and the next measurement is armed.

• If all modules are in the measurement state in continuous mode when the Sync line 
transition occurs, the LO frequency is synchronously updated, and the measurement 
continues.

• In continuous mode care must be taken to assure that all modules are in the same 
state, either the Idle state or the Measure state, before the Sync line transition occurs, 
otherwise some modules re-arm while others continue the current measurement.

• In block mode the Sync line transition is ignored unless all modules are currently in 
the Idle state.
32



��
�������� ������
Managing multiple modules
• If you also intend to change the digital filters along with the center frequency, you 
should synchronize the digital filters first. Otherwise the center frequency phase 
becomes non-synchronized when the digital filters are changed.

Trigger and phase in multi-module systems

When triggering is used in multiple modules, you do not need to measure phase 
differences between two or more channels if the channels are set up identically in terms 
of digital filtering and LO frequency, and the digital filters and LOs are correctly 
synchronized. Since the filters and LOs are synced together, their actual trigger delays and 
LO phases will be identical and will cancel out of relative phase measurements. Any 
remaining delay should be less than 10nS between two modules in the same mainframe.

Only the module which generates the trigger has knowledge of the delay between the 
trigger event and the start of data collection. Therefore, if you need the actual delay from 
the trigger, you should use the trigger delays from each module and the trigger delay 
correction from the module that generated the trigger. See “Delay and phase in triggered 
measurements” on page 24.
33



��
�������� ������
Transferring data
Transferring data

You can transfer data from the HP E1438A two different ways:

• The VMEbus is the universal data bus for VXI architecture. It provides flexibility and 
versatility in transferring data. Transfers over the VMEbus are 16 bits or 32 bits wide. 

• The Local Bus supports faster transfer rates than the VMEbus. For example, if you are 
transferring data from the HP E1438A to the HP E1485A/B, the Local Bus provides a 
direct pipeline to the HP E1485’s DSPs.

Using the Local Bus, you can transfer data in the background while processing data in a 
signal-processing module. All Local Bus data transfers originate in the HP E1438A and 
move towards a signal processing module to the right of the HP E1438A. If other modules 
generate data to the left of the input module, the HP E1438A passes the data to its right 
and inserts or appends its own data at the beginning or end of the frame.
34



�

4 HP E1438A Programmer’s Reference



�� ��������������������������� �
Introduction
Introduction

The programmer’s reference is presented as a set of VXIplug&play functions since this is 
the primary targeted environment. However, when you performed the setup for the 
HP E1438A, drivers were installed to support various programming environments as 
described in “Programming the HP E1438A” in chapter 3. 

The function descriptions in the programmer’s reference are valid for all environments. 
Be sure to follow the instructions in “Getting Started with the HP E1438A,” Chapter 2 to 
assure proper installation and to become familiar with the capabilities of your HP E1438A 
software in various programming environments. You should find the example programs 
particularly helpful for programming in various environments.

Many of the function descriptions in the programming reference include several related 
functions. You may use the primary function to set all related parameters or you may use 
the other functions within the group to set or query a single parameter.

Parameter variables are presented as alphanumeric values which are descriptive and easy 
to remember. However, for faster programming you may use the numeric equivalents for 
the parameter variables listed at the end of this section.
36



�� ��������������������������� �
Functions listed by class
Functions listed by class

Component Capability Subclass Function Name

INITIALIZE & CLOSE age1438_init (on page 87)

age1438_close (on page 63)

MEASURE READ INITIATE age1438_meas_control (on page 105)

age1438_meas_init (on page 108)

age1438_meas_start (on page 109)

MEASURE READ FETCH age1438_read (on page 112)

age1438_read64 (on page 112)

age1438_read_raw (on page 115)

MEASURE CONFIGURE age1438_clock_fs (on page 55)

age1438_clock_fs_get (on page 55)

age1438_clock_recover (on page 56)

age1438_clock_setup (on page 57)

age1438_clock_setup_get (on page 57)

age1438_data_memsize_get (on page 64)

age1438_data_scale_get (on page 65)

age1438_data_setup (on page 66)

age1438_filter_setup (on page 76)

age1438_frequency_setup (on page 83)

age1438_input_autozero (on page 89)

age1438_input_range_auto (on page 92)

age1438_input_setup  (on page 95)

age1438_trigger_setup (on page 136)

ROUTE CONFIGURE age1438_lbus_mode (on page 101)

age1438_lbus_mode_get (on page 101)

age1438_lbus_reset (on page 103)

age1438_lbus_reset_get (on page 103)

UTILITY age1438_error_message (on page 74)

age1438_error_query (on page 75)

age1438_input_range_convert (on page 93)

age1438_interrupt_mask_get (on page 99)

age1438_interrupt_priority_get (on page 99)

age1438_interrupt_restore (on page 98)
37



�� ��������������������������� �
Functions listed by class
age1438_interrupt_setup (on page 99)

age1438_reset (on page 120)

age1438_revision_query (on page 122)

age1438_self_test (on page 123)

age1438_state_save (on page 128)

age1438_state_recall (on page 127)

MEASURE CONFIGURE LOW LEVEL age1438_adc_clock  (on page 51)

age1438_adc_clock_get (on page 51)

age1438_adc_divider (on page 52)

age1438_adc_divider_get (on page 52)

age1438_data_blocksize  (on page 66)

age1438_data_blocksize_get  (on page 66)

age1438_data_delay  (on page 66)

age1438_data_delay_get  (on page 66)

age1438_data_mode  (on page 66)

age1438_data_mode_get  (on page 66)

age1438_data_port  (on page 66)

age1438_data_port_get  (on page 66)

age1438_data_resolution  (on page 66)

age1438_data_resolution_get  (on page 66)

age1438_data_type  (on page 66)

age1438_data_type_get  (on page 66)

age1438_data_xfersize  (on page 71)

age1438_data_xfersize_get  (on page 71)

age1438_input_alias_filter  (on page 95)

age1438_input_alias_filter_get  (on page 95)

age1438_input_coupling  (on page 95)

age1438_input_coupling_get  (on page 95)

age1438_input_offset (on page 90)

age1438_input_offset_get (on page 90)

age1438_input_offset_save (on page 91)

age1438_input_range  (on page 95)

age1438_input_range_get  (on page 95)

age1438_input_signal  (on page 95)

age1438_input_signal_get  (on page 95)

age1438_filter_decimate  (on page 76)

age1438_filter_decimate_get  (on page 76)

age1438_filter_bw  (on page 76)

age1438_filter_bw_get  (on page 76)

age1438_filter_sync  (on page 79)

Component Capability Subclass Function Name
38



�� ��������������������������� �
Functions listed by class
age1438_frequency_center  (on page 83)

age1438_frequency_center_get  (on page 83)

age1438_frequency_center_raw (on page 81)

age1438_frequency_center_raw_get (on page 81)

age1438_frequency_cmplxdc (on page 83)

age1438_frequency_cmplxdc_get (on page 83)

age1438_frequency_sync  (on page 83)

age1438_frequency_sync_get  (on page 83)

age1438_front_panel_clock_input (on page 86)

age1438_front_panel_clock_input_get (on page 86)

age1438_reference_clock (on page 118)

age1438_reference_clock_get  (on page 118)

age1438_reference_prescaler (on page 119)

age1438_reference_prescaler_get (on page 119)

age1438_smb_clock_output (on page 126)

age1438_smb_clock_output_get (on page 126)

age1438_sync_clock (on page 131)

age1438_sync_clock_get (on page 131)

age1438_sync_direction (on page 132)

age1438_sync_direction_get (on page 132)

age1438_sync_output (on page 133)

age1438_sync_output_get (on page 133)

age1438_trigger_adclevel  (on page 136)

age1438_trigger_adclevel_get  (on page 136)

age1438_trigger_delay  (on page 136)

age1438_trigger_delay_get  (on page 136)

age1438_trigger_delay_actual_get  (on page 134)

age1438_trigger_gen  (on page 136)

age1438_trigger_gen_get  (on page 136)

age1438_trigger_maglevel  (on page 136)

age1438_trigger_maglevel  (on page 136)

age1438_trigger_phase_actual_get (on page 135)

age1438_trigger_slope  (on page 136)

age1438_trigger_slope_get  (on page 136)

age1438_trigger_type  (on page 136)

age1438_trigger_type_get  (on page 136)

age1438_vcxo (on page 140)

age1438_vcxo_freq (on page 141)

age1438_vcxo_freq_get (on page 141)

age1438_vcxo_freq_preset (on page 142)

Component Capability Subclass Function Name
39



�� ��������������������������� �
Functions listed by class
age1438_vcxo_get (on page 140)

age1438_vxi_clock_output (on page 143)

age1438_vxi_clock_output_get (on page 143)

UTILITY LOW LEVEL age1438_attrib_get (on page 53)

age1438_cal_get (on page 54)

age1438_driver_debug_level (on page 72)

age1438_driver_debug_level_get (on page 72)

age1438_options_get (on page 110)

age1438_product_id_get (on page 111)

age1438_reset_hard (on page 121)

age1438_serial_number (on page 125)

age1438_serial_number_get (on page 125)

age1438_status_get (on page 129)

age1438_wait (on page 144)

Component Capability Subclass Function Name
40



�� ��������������������������� �
Functions listed by functional group
Functions listed by functional group

This section lists the programing functions in groups of related functions. A brief 
description of each group follows:

“Initializing and closing” on page 42: You must initialize the I/O driver and set up each 
module before using any other functions.

“Identification” on page 43: These functions identify the module, serial number and 
options.

“Analog setup” on page 42: These functions determine how the analog input section is 
configured.

“Data format” on page 42: An HP E1438A can collect either real or complex data in 12-bit 
or 24-bit format. It can collect data into various blocksizes or in a continuous mode. This 
data can be transferred either on the VXI backplane or over the Local Bus.

“Digital processing” on page 43: The decimation filter provides bandpass filtering and 
decimation capabilities. You may also select limited frequency spans away from 
baseband.

“Measurement control” on page 44: These functions initiate or terminate the 
measurement loop.

“Timing” on page 44: The clock signals for the ADC sample clock can be set in a variety of 
ways. One HP E1438A can be enabled to drive the sample clock line on the VXI backplane 
or front panel to enable synchronization of multiple HP E1438A modules.

“Trigger” on page 45: These functions set all parameters associated with triggering the 
beginning of data collection.

“Synchronization (controlling multiple modules)” on page 45: These functions support 
synchronous operation among multiple HP E1438As by using shared ADC clock and Sync 
signals to drive all the modules in a system.

“Reading data” on page 45: The HP E1438A reads data from either the VME or the Local 
Bus data port. This data can optionally be scaled and converted to floating point.

“Interrupts” on page 44: The HP E1438A can be programmed to interrupt via the VXI 
backplane whenever certain status conditions are present.

“Debugging” on page 43: Allows you to identify program and hardware problems.
41



�� ��������������������������� �
Functions listed by functional group
������������	��
	������
age1438_init (on page 87) � initializes the I/O driver for a module
age1438_close (on page 63) � closes the module’s software connection

������	����
age1438_input_setup  (on page 95) � sets all the analog input parameters
age1438_input_alias_filter (on page 95) � include/bypass the built-in analog anti-

alias filter
age1438_input_alias_filter_get (on page 95) � gets the anti-alias filter state
age1438_input_autozero (on page 95) � nulls out the input dc offset in baseband 

mode
age1438_input_coupling (on page 95) � selects ac or dc input coupling
age1438_input_coupling_get (on page 95) � get the input coupling type
age1438_input_offset (on page 90) � sets the dc offset settings for the current range
age1438_input_offset_get (on page 90) � gets the dc offset settings
age1438_input_offset_save (on page 91) � saves the dc offset settings in NVRAM
age1438_input_range (on page 95) � sets the full scale input range
age1438_input_range_auto (on page 92) � performs auto-ranging
age1438_input_range_convert (on page 93) � converts input range to volts
age1438_input_range_get (on page 95) � gets the input range
age1438_input_signal (on page 95) � connect/disconnect the input signal to the input 

amplifier
age1438_input_signal_get (on page 95) � gets the input buffer amplifier state
age1438_state_save (on page 128) � saves the current module state
age1438_state_recall (on page 127) � recalls a previous module state

����	������
age1438_data_setup (on page 66) � sets all format and data output flow parameters
age1438_data_blocksize (on page 66) � determines the size of the output data block
age1438_data_blocksize_get (on page 66) � gets the output data block size
age1438_data_delay (on page 66) � determines FIFO delay in continuous mode
age1438_data_delay_get (on page 66) � gets FIFO delay
age1438_data_memsize_get (on page 64) � returns module’s memory size
age1438_data_mode (on page 66) � selects block mode or continuous mode
age1438_data_mode_get (on page 66) � gets the data mode
age1438_data_port (on page 66) � selects VME bus or local bus output transmission
age1438_data_port_get (on page 66) � gets the output port designation
age1438_data_resolution (on page 66) � selects 12 or 24 bits data resolution
age1438_data_resolution_get (on page 66) � gets the data resolution
age1438_data_scale_get (on page 65) � gets the data scale factor used to convert raw 

data to volts
age1438_data_type (on page 66) � selects real or complex output data
age1438_data_type_get (on page 66) � gets output data type
age1438_data_xfersize  (on page 71) � allows a specified amount of data to be read 

before an entire block has been acquired.
age1438_data_xfersize_get  (on page 71) � gets the data transfer size
age1438_lbus_mode (on page 101) � sets the transmission mode of the local bus
age1438_lbus_mode_get (on page 101) � gets the local bus transmission mode
age1438_lbus_reset (on page 103) � resets the local bus
42



�� ��������������������������� �
Functions listed by functional group
age1438_lbus_reset_get (on page 103) � gets the local bus reset state

���������
age1438_cal_get (on page 54) � gets last calibration date of specified board
age1438_clock_recover (on page 56) � allows recovery from an out-of-spec external 

sample clock
age1438_driver_debug_level (on page 72) � sets the debug level
age1438_driver_debug_level_get (on page 72) � gets the debug level
age1438_error_message (on page 74) � returns error information obtained from 

function calls
age1438_error_query (on page 75) � queries the module for the most recent error
age1438_status_get (on page 129) � retrieves the module’s status register informa-

tion
age1438_self_test (on page 123) � performs a self-test on the module and returns the 

result

�������	��������
age1438_filter_setup (on page 76) � sets the digital filter bandwidth and decimation 

filter parameters
age1438_filter_bw (on page 76) � selects a signal filter bandwidth
age1438_filter_bw_get (on page 76) � gets the signal filter bandwidth
age1438_filter_decimate (on page 76) � enables/disables an extra factor of 2 decima-

tion
age1438_filter_decimate_get (on page 76) � gets current state of extra decimation
age1438_filter_sync (on page 79) � synchronizes the decimation filter counter
age1438_frequency_setup (on page 83) � sets all zoom center frequency parameters
age1438_frequency_center (on page 83) � sets the center frequency
age1438_frequency_center_get (on page 83) � gets the current center frequency
age1438_frequency_center_raw (on page 81) � quickly sets the center frequency
age1438_frequency_center_raw_get (on page 81) � gets the raw center frequency
age1438_frequency_cmplxdc (on page 83) � selects a complex baseband measure-

ment
age1438_frequency_cmplxdc_get (on page 83) � gets the state of the baseband mea-

surement mode
age1438_frequency_sync (on page 83) � prepares the module for a synchronous fre-

quency change
age1438_frequency_sync_get (on page 83)  � gets the state of the synchronous 

change mode

�
������������
age1438_product_id_get (on page 111) � returns the module’s product identification 

string
age1438_options_get (on page 110) � returns the module’s options
age1438_serial_number (on page 110) � sets the module’s serial number for product 

repair purposes
age1438_serial_number_get (on page 110) � returns the module’s serial number
age1438_revision_query (on page 122) � returns strings that identify the date of the 

module’s firmware revision
43



�� ��������������������������� �
Functions listed by functional group
���������
age1438_attrib_get (on page 53) � gets low-level attributes of current I/O library ses-

sion
age1438_interrupt_setup (on page 99) � sets all interrupt parameters
age1438_interrupt_mask_get (on page 99) � gets the interrupt event mask
age1438_interrupt_priority_get (on page 99) � gets the VME interrupt line
age1438_interrupt_restore (on page 98) � restores the interrupt masks to the most 

recent setting

����������	�������
age1438_meas_control (on page 105) � initiates and controls measurements in multi-

module systems
age1438_meas_init (on page 108) � initiates a measurement without first checking 

for valid hardware setup
age1438_meas_start (on page 109) � checks for valid hardware setup and then ini-

tiates a measurement
age1438_reset (on page 120) � places the module in a known state
age1438_reset_hard (on page 121) � resets the module hardware

������
age1438_clock_setup (on page 57) � sets all timing parameters for commonly used 

measurement setups
age1438_clock_setup_get (on page 57) � gets the current clock setup
age1438_clock_fs (on page 55) � provides the frequency of an external sample clock
age1438_clock_fs_get (on page 55) � gets the current external sample clock fre-

quency
age1438_adc_clock (on page 51) � specifies the ADC clock source
age1438_adc_clock_get (on page 51) � gets the ADC clock source
age1438_adc_divider (on page 52) � determines which divider is applied to the ADC 

clock source
age1438_adc_divider_get  (on page 52)� gets the module’s current clock divider 

state
age1438_front_panel_clock_input (on page 86) � specifies the source for the front 

panel clock
age1438_front_panel_clock_input_get (on page 86) � gets the front panel clock 

source
age1438_reference_clock (on page 118) � selects the source of the reference clock
age1438_reference_clock_get (on page 118) � gets the source of the reference clock
age1438_reference_prescaler (on page 119) � selects prescaling of the reference 

clock
age1438_reference_prescaler_get (on page 119) � gets prescaling of the reference 

clock
age1438_smb_clock_output (on page 126) � specifies which clock to output from the 

SMB clock connectors
age1438_smb_clock_output_get (on page 126) � gets which clock to output from the 

SMB clock connectors
age1438_sync_clock (on page 131) � selects the source of the sync signal
age1438_sync_clock_get (on page 131) � gets the source of the sync signal
age1438_sync_direction (on page 132) � selects front or rear panel availability of the 
44



�� ��������������������������� �
Functions listed by functional group
sync signal
age1438_sync_direction_get (on page 132) � gets the state of front or rear panel 

clock availability
age1438_sync_output (on page 133) � selects the output for the sync signal
age1438_sync_output_get (on page 133) � gets the output for the sync signal
age1438_vcxo (on page 140) � selects whether the module should use an internal 

clock source
age1438_vcxo_get (on page 140) � gets whether the internal clock source is on or off
age1438_vcxo_freq (on page 141) � selects which internal clock the module uses
age1438_vcxo_freq_get (on page 141) � gets which internal clock the module uses
age1438_vcxo_freq_preset (on page 142) � selects which internal clock source 

should be used as a default
age1438_vxi_clock_output (on page 143) � selects which clock drives the VXI clock
age1438_vxi_clock_output_get (on page 143) � gets which clock drives the VXI 

clock

	�������
age1438_trigger_setup (on page 136) � sets all parameters associated with triggering 

the beginning of data collection
age1438_trigger_adclevel (on page 136) � specifies the threshold for the ADC trigger
age1438_trigger_adclevel_get (on page 136) � gets the trigger threshold
age1438_trigger_delay (on page 136) � specifies a pre- or post-trigger delay time
age1438_trigger_delay_get (on page 136) � gets the trigger delay time
age1438_trigger_delay_actual_get (on page 134)  � gets the actual delay time from 

the most recent trigger event
age1438_trigger_gen (on page 136) � determines whether a module can generate a 

trigger
age1438_trigger_gen_get (on page 136) � gets the trigger generation status
age1438_trigger_maglevel (on page 136) � specifies the threshold for a magnitude 

trigger
age1438_trigger_maglevel_get (on page 136) � gets magnitude trigger threshold
age1438_trigger_phase_actual_get (on page 135) � returns a representation of the 

phase value of the LO at the most recent trigger point
age1438_trigger_slope (on page 136) � selects a positive or negative trigger
age1438_trigger_slope_get (on page 136) � gets trigger slope
age1438_trigger_type (on page 136) � specifies the trigger type
age1438_trigger_type_get (on page 136) � gets trigger type

���
���	
���
age1438_data_scale_get (on page 65) � gets data scale factor
age1438_read (on page 112) � reads scaled 32-bit float data from FIFO
age1438_read64 (on page 112) � reads scaled 64-bit float data from FIFO, specifically 

for VEE applications
age1438_read_raw (on page 115) � reads raw data from FIFO

���������������	������������	��������	��
����
age1438_clock_setup (on page 57) � supplies commonly used clock and sync config-

urations
See “Timing” on page 44 for low level clock and sync setup commands
45



�� ��������������������������� �
Functions listed by functional group
age1438_clock_setup_get (on page 57) � gets the current clock and sync setup
age1438_clock_fs (on page 55) � provides a clock frequency for external sample 

clock configurations
age1438_clock_fs_get (on page 55) � gets the external clock frequency
age1438_filter_sync (on page 79) � synchronizes the decimation filter counter
age1438_frequency_sync and age1438_frequency_center  (on page 83)  � prepare 

the modules for frequency change
age1438_meas_control (on page 105) � synchronizes arming and triggering in multi-

module systems
age1438_trigger_gen (on page 136) � determines whether a module can generate a 

trigger
age1438_trigger_gen_get (on page 136) � gets the trigger generation status
age1438_wait (on page 144) � facilitates the synchronization and control of multi-

module systems
46



�� ��������������������������� �
Functions listed alphabetically
Functions listed alphabetically

age1438_adc_clock (on page 51) � determines the ADC clock source
age1438_adc_clock_get (on page 51) � gets the ADC clock source
age1438_adc_divider (on page 52) � determines which divider is applied to the 

ADC clock source
age1438_adc_divider_get  (on page 52)� gets the module’s current clock divider 

state
age1438_attrib_get (on page 53) � gets low-level attributes of current I/O library 

session.
age1438_cal_get (on page 54) � gets last calibration date of specified board
age1438_clock_fs (on page 55) � provides the module with the frequency of an 

external sample clock
age1438_clock_fs_get (on page 55) � gets the current external sample clock fre-

quency
age1438_clock_recover (on page 56) � allows recovery from an out-of-spec 

external sample clock
age1438_clock_setup (on page 57) � sets all timing parameters for commonly 

used measurement setups
age1438_clock_setup_get (on page 57) � gets the current clock setup
age1438_close (on page 63) � closes the module’s software connection
age1438_data_blocksize (on page 66) � determines the size of the output data 

block
age1438_data_blocksize_get (on page 66) � gets the output data block size
age1438_data_delay (on page 66) � determines FIFO delay in continuous mode
age1438_data_delay_get (on page 66) � gets FIFO delay in continuous mode
age1438_data_memsize_get (on page 64) � returns module’s memory size in 

megabytes
age1438_data_mode (on page 66) � selects block mode or continuous mode
age1438_data_mode_get (on page 66) � gets the data mode
age1438_data_port (on page 66) � selects VME bus or local bus output port 

transmission
age1438_data_port_get (on page 66) � gets the output port designation
age1438_data_resolution (on page 66) � selects 12 or 24 bits data resolution
age1438_data_resolution_get (on page 66) � gets the data resolution
age1438_data_scale_get (on page 65) � gets data scale factor used to convert 

raw data to volts
age1438_data_setup (on page 66) � sets all format and data output flow parame-

ters
age1438_data_type (on page 66) � selects real or complex output data
age1438_data_type_get (on page 66) � gets output data type
age1438_data_xfersize  (on page 71) � allows a specified amount of data to be 

read before an entire block has been acquired
age1438_data_xfersize_get  (on page 71) � gets the data transfer size
age1438_driver_debug_level (on page 72) � sets the debug level
47



�� ��������������������������� �
Functions listed alphabetically
age1438_driver_debug_level_get (on page 72) � gets the debug level
age1438_error_message (on page 74) � returns error information obtained from 

function calls
age1438_error_query (on page 75) � queries the module for the most recent 

error
age1438_filter_bw (on page 76) � selects a signal filter bandwidth
age1438_filter_bw_get (on page 76) � gets the signal filter bandwidth
age1438_filter_decimate (on page 76) � enables/disables and extra factor of 2 

decimation
age1438_filter_decimate_get (on page 76) � gets current state of extra decima-

tion
age1438_filter_setup (on page 76) � sets the digital filter bandwidth and decima-

tion filter parameters
age1438_filter_sync (on page 79) � synchronizes the decimation filter counter
age1438_frequency_center (on page 83) � sets the center frequency
age1438_frequency_center_get (on page 83) � gets the current center frequency
age1438_frequency_center_raw (on page 81) � quickly sets the center fre-

quency
age1438_frequency_center_raw_get (on page 81) � gets the raw center fre-

quency
age1438_frequency_cmplxdc (on page 83) � selects a complex baseband mea-

surement
age1438_frequency_cmplxdc_get (on page 83) � gets the state of the baseband 

measurement mode
age1438_frequency_setup (on page 83) � sets all the zoom center frequency 

parameters
age1438_frequency_sync (on page 83) � prepares the module for a synchronous 

frequency change
age1438_frequency_sync_get (on page 83)  � gets the state of the synchronous 

change mode
age1438_front_panel_clock_input (on page 86) � specifies the source of the 

front panel clock
age1438_front_panel_clock_input_get (on page 86) � gets the front panel clock 

source
age1438_init (on page 87) � initializes the I/O driver for a module
age1438_input_alias_filter (on page 95) � include/bypass the built-in analog 

anti-alias filter
age1438_input_alias_filter_get (on page 95) � gets the anti-alias filter state
age1438_input_autozero (on page 89) � nulls out the input dc offset in baseband 

mode
age1438_input_coupling (on page 95) � selects ac or dc input coupling
age1438_input_coupling_get (on page 95) � get the input coupling type
age1438_input_offset (on page 90) � sets the dc offset settings for the current 

range
age1438_input_offset_get (on page 90) � gets the dc offset settings
age1438_input_offset_save (on page 91) � saves the dc offset settings in NVRAM
age1438_input_range (on page 95) � sets the full scale range
age1438_input_range_auto (on page 92) � performs auto-ranging in baseband 

mode
age1438_input_range_convert  (on page 93) � converts the input range to volts
age1438_input_range_get (on page 95) � gets the input range
age1438_input_setup (on page 95) � sets all the analog input parameters
48



�� ��������������������������� �
Functions listed alphabetically
age1438_input_signal (on page 95) � connect/disconnect the input signal to the 
input amplifiers

age1438_input_signal_get (on page 95) � gets the input buffer amplifier state
age1438_interrupt_mask_get (on page 99) � gets the interrupt event mask
age1438_interrupt_priority_get (on page 99) � gets the VME interrupt line
age1438_interrupt_restore (on page 98) � restores the interrupt masks to the 

most recent setting
age1438_interrupt_setup (on page 99) � sets both interrupt parameters
age1438_lbus_mode (on page 101) � sets the local bus transmission mode
age1438_lbus_mode_get (on page 101) � gets the local bus mode
age1438_lbus_reset (on page 103) � resets local bus
age1438_lbus_reset_get (on page 103) � gets the local bus mode reset state
age1438_meas_control (on page 105) � initiates and controls measurements in 

multi-module systems
age1438_meas_init (on page 108) � initiates a measurement without first check-

ing for valid hardware setup
age1438_meas_start (on page 109) � checks for valid hardware setup and then 

initiates a measurement
age1438_options_get (on page 110) � returns the module’s options
age1438_product_id_get (on page 111) � returns the module’s product identifica-

tion string
age1438_read (on page 112) � reads scaled 32-bit float data from FIFO
age1438_read_raw (on page 115) � reads raw data from FIFO
age1438_read64 (on page 112) � reads scaled 64-bit float data from FIFO, specifi-

cally for VEE applications
age1438_reference_clock (on page 118) � selects the source of the reference 

clock
age1438_reference_clock_get (on page 118) � gets the source of the reference 

clock
age1438_reference_prescaler (on page 119) � selects prescaling of the refer-

ence clock
age1438_reference_prescaler_get (on page 119) � gets prescaling of the refer-

ence clock
age1438_reset (on page 120) � places the module in a known state
age1438_reset_hard (on page 121) � resets the module hardware
age1438_revision_query (on page 122) � returns strings that identify the date of 

the firmware revision. 
age1438_self_test (on page 123) � performs a self-test on the module and returns 

the result
age1438_serial_number (on page 110) � sets the module’s serial number for 

product repair purposes
age1438_serial_number_get (on page 110) � returns the module’s serial number
age1438_smb_clock_output (on page 126) � specifies which clock to output 

from the SMB clock connectors
age1438_smb_clock_output_get (on page 126) � gets which clock to output 

from the SMB clock connectors
age1438_state_save (on page 128) � saves the current module state
age1438_state_recall (on page 127) � recalls a saved module state
age1438_status_get (on page 129) � retrieves module's status register informa-

tion
age1438_sync_clock (on page 131) � selects the source of the sync signal
age1438_sync_clock_get (on page 131) � gets the source of the sync signal
49



�� ��������������������������� �
Functions listed alphabetically
age1438_sync_direction (on page 132) � selects front or rear panel availability of 
the sync signal

age1438_sync_direction_get (on page 132) � gets the state of front or rear panel 
clock availability

age1438_sync_output (on page 133) � selects the output for the sync signal
age1438_sync_output_get (on page 133) � gets the output for the sync signal
age1438_trigger_adclevel (on page 136) � specifies the threshold for the ADC 

trigger
age1438_trigger_adclevel_get (on page 136) � gets the trigger threshold
age1438_trigger_delay (on page 136) � specifies a pre- or post-trigger delay time
age1438_trigger_delay_actual_get (on page 134) � gets the actual delay time 

from the most recent trigger event
age1438_trigger_delay_get (on page 136) � gets the trigger delay time
age1438_trigger_gen (on page 136) � determines whether a module can generate 

a trigger
age1438_trigger_gen_get (on page 136) � gets the trigger generation status
age1438_trigger_maglevel (on page 136) � specifies the threshold for a magni-

tude trigger
age1438_trigger_maglevel_get (on page 136) � gets magnitude trigger threshold
age1438_trigger_phase_actual_get (on page 135) � returns a representation of 

the phase value of the LO at the most recent trigger point
age1438_trigger_setup (on page 136) � sets all parameters associated with trig-

gering the beginning of data collection
age1438_trigger_slope (on page 136) � selects a positive or negative trigger
age1438_trigger_slope_get (on page 136) � gets trigger slope
age1438_trigger_type (on page 136) � determines the trigger type
age1438_trigger_type_get (on page 136) � gets trigger type
age1438_vcxo (on page 140) � selects whether the module should use an internal 

clock source
age1438_vcxo_freq (on page 141) � selects which internal clock the module uses
age1438_vcxo_freq_get (on page 141) � gets which internal clock the module 

uses
age1438_vcxo_get (on page 140) � gets whether the internal clock source is on or 

off
age1438_vcxo_freq_preset (on page 142) � selects which internal clock source 

should be used as a default
age1438_vxi_clock_output (on page 143) � selects which clock drives the VXI 

clock
age1438_vxi_clock_output_get (on page 143) � gets which clock drives the VXI 

clock
age1438_wait (on page 144) � facilitates the synchronization and control of multi-

module systems
50



�� ��������������������������� �
Functions listed alphabetically
age1438_adc_clock

Specifies the ADC clock source. This description also includes the query function:

age1438_adc_clock_get

VXIplug&play Syntax

#include "age1438".h

ViStatus age1438_adc_clock(ViSession id, ViInt16 adcClock);

ViStatus age1438_adc_clock_get(ViSession id, ViPInt16 adcClockPtr);

Note This command should be used only for specialized custom clock requirements. 

Most useful clock setups can be supplied by age1438_clock_setup.

Parameters

id is the VXI instrument session pointer returned by the age1438_init function.

adcClock AGE1438_VCXO_INTERNAL selects an internal oscillator within the module. age1438_

vcxo_freq determines which oscillator is used. age1438_vcxo determines whether the 
internal oscillator is turned on. You must use all three of the functions to provide the 
desired internal clock source. 

AGE1438_VCXO_EXT_REF takes an external reference signal on the front panel and uses 
a phase-locked loop to convert it to the ADC clock of the module. The ADC clock can be 
either 100 MHz or 102.4 MHz. The external reference used by the phase lock loop to 
synthesize the ADC clock can be either a 10 MHz or 10.24 MHz signal.

AGE1438_EXT_SAMPLE_CLOCK uses an external sample clock selected by age1438_

reference_clock.

adcClockPtr points to the value of the current adcClock.

Return Value

AGE1438_SUCCESS indicates that a function was successful.

Values other than AGE1438_SUCCESS indicate an error condition or other important 
status condition. To determine the error message, pass the return value to “age1438_
error_message” on page 74.

See Also

“Commands which halt active measurements” on page 149, “Default values” on page 152, 
“age1438_init” on page 87, “age1438_clock_setup” on page 57, “age1438_vcxo_freq” on 
page 141, “age1438_vcxo_freq_preset” on page 142, “age1438_vcxo” on page 140, 
“age1438_front_panel_clock_input” on page 86, “age1438_reference_clock” on page 118, 
“Using clock and sync” in chapter 3
51



�� ��������������������������� �
Functions listed alphabetically
age1438_adc_divider

Determines which divider is applied to the ADC clock source. This description also 
includes the query function:

age1438_adc_divider_get

VXIplug&play Syntax

#include "age1438".h

ViStatus age1438_adc_divider(ViSession id, ViInt16 adcDivider);

ViStatus age1438_adc_divider_get(ViSession id, ViPInt16 adcDividerPtr);

Note This command should be used only for specialized custom clock requirements. 

Most useful clock setups can be supplied by age1438_clock_setup.

Description

This function should generally be left in the default mode. The alternate mode applies to a 
different model of the module.

Parameters

id is the VXI instrument session pointer returned by the age1438_init function.

adcDivider AGE1438_DIVIDE_BY_10 divides the ADC clock by 10.

AGE1438_DIVIDE_BY_38 divides the ADC clock by 38.

adcDividerPtr points to the current value of adcDivider.

Return Value

AGE1438_SUCCESS indicates that a function was successful.

Values other than AGE1438_SUCCESS indicate an error condition or other important 
status condition. To determine the error message, pass the return value to “age1438_
error_message” on page 74.

Comments

The HP E1438A normally runs its sample clock at either 100 MHz or 102.4 MHz. The PLL 
divider divides the VCO by 10 to get either a 10 MHz or 10.24 MHz clock to compare to a 
10 or 10.24 reference clock, which the user can supply through the front panel BNC. 
Alternatively the reference can come from a master module in the system via the back 
plane or front panel SMBs.

See Also

“Default values” on page 152, “age1438_init” on page 87, “age1438_clock_setup” on 
page 57, “Using clock and sync” in chapter 3
52



�� ��������������������������� �
Functions listed alphabetically
age1438_attrib_get

Gets low-level attributes of current I/O library session.

VXIplug&play Syntax

#include "age1438".h

ViStatus age1438_attrib_get(ViSession id, ViInt16 attribute, ViPint32 value);

Description

age1438_attrib_get is used primarily to manage the use of interrupts which requires 
making direct VISA function calls. Since interrupts are a shared resource across all 
modules using the VXI interface, it is not possible for the HP E1438A library, which 
governs single modules, to provide the functions to properly manage interrupts. 

This function is used to access either the I/O library handle or the mapped I/O base 
address of the module. You should refer to the appropriate VISA documentation for 
descriptions of the I/O library functions.

Parameters

id is the VXI instrument session pointer returned by the age1438_init function.

attribute designates the type of attribute to return.

AGE1438_IO_HANDLE accesses the I/O library handle.

AGE1438_IO_ADDRESS points to the mapped I/O base address of the module.

AGE1438_RM_HANDLE accesses the I/O library handle of the default resource manager. 

AGE1438_DATA_REGISTER points to the mapped address of the HP E1438A data 
register. One or both of these parameters are used when calling I/O library functions 
directly.

value is the value of the requested attribute. For the VISA I/O library the value of the handle 
attribute corresponds to the vi parameter used by the majority of the I/O functions. The 
address attribute points to the base of the mapped I/O address space.

Example

See the interrupt.c example program.

Return Value

AGE1438_SUCCESS indicates that a function was successful.

Values other than AGE1438_SUCCESS indicate an error condition or other important 
status condition. To determine the error message, pass the return value to “age1438_
error_message” on page 74.

See Also

“age1438_init” on page 87, “age1438_interrupt_setup” on page 99
53



�� ��������������������������� �
Functions listed alphabetically
age1438_cal_get

Gets last calibration date of specified board.

VXIplug&play Syntax

#include "age1438".h

ViStatus age1438_cal_get(ViSession id, ViInt16 board, ViPInt32 datestampPtr);

Description

age1438_cal_get is used to read the date stamp of the last calibration. 

Parameters

id is the VXI instrument session pointer returned by the age1438_init function.

board AGE1438_01_BOARD returns calibration information for the 01 board. 

AGE1438_02_BOARD returns calibration information for the 02 board.

datestampPtr points to the return location for the timestamp of the most recent saved calibrations. 
Format is MMDDYYYY, hh:mm in base 10 notation.

Return Value

AGE1438_SUCCESS indicates that a function was successful.

Values other than AGE1438_SUCCESS indicate an error condition or other important 
status condition. To determine the error message, pass the return value to “age1438_
error_message” on page 74.

See Also

“age1438_init” on page 87
54



�� ��������������������������� �
Functions listed alphabetically
age1438_clock_fs

Provides the module with the frequency of an external sample clock. This description also 
includes the query: 

age1438_clock_fs_get

VXIplug&play Syntax

#include "age1438".h

ViStatus age1438_clock_fs(ViSession id, ViReal64 fs);

ViStatus age1438_clock_fs_get(ViSession id, ViPReal64 fsPtr);

Description

This command is applicable only when an external sample clock is used. It is an order-
dependent command and must be set after selecting the external sample clock.

When using an external sample clock or when a module is a non-master in a multi-module 
group, the frequency of the ADC clock is unknown by the module. It is the responsibility 
of the programmer to provide the correct frequency so that library functions dependent 
on fs operate properly. This value has no effect if the module is not set up to use the 
external sample clock.

Parameters

id is the VXI instrument session pointer returned by the age1438_init function.

fs provides the module with the frequency of an external sample clock (from 10,000,000 to 
103,000,000) connected to the Ext Clk TTL connector. 

AGE1438_FS_MIN supplies the minimum external sample clock frequency.

AGE1438_FS_MAX supplies the maximum external sample clock frequency. 

fsPtr points to the current value of the external sample clock frequency. If the HP E1438A is set 
to the internal ADC clock, this query returns the value of that clock frequency. If the 
HP E1438A is set to the external clock, this query returns the last value entered via the 
age1438_clock_fs function.

Return Value

AGE1438_SUCCESS indicates that a function was successful.

Values other than AGE1438_SUCCESS indicate an error condition or other important 
status condition. To determine the error message, pass the return value to “age1438_
error_message” on page 74.

See Also

“Default values” on page 152, “age1438_init” on page 87, “age1438_clock_setup” on 
page 57, “age1438_front_panel_clock_input” on page 86, “Using clock and sync” in 
chapter 3
55



�� ��������������������������� �
Functions listed alphabetically
age1438_clock_recover

Allows recovery from an out-of-spec external sample clock. 

VXIplug&play Syntax

#include "age1438".h

ViStatus age1438_clock_recover(ViSession id);

Description

This command is used to restore proper function if the module has received an out-of 
spec external sample clock. An out-of-spec situation could occur if the external sample 
clock is removed or changed during operation, or if it has glitches which don’t meet 
specs. In this case the module would cease functioning and this command must be issued 
in order to resume proper operation after restoring a valid clock. 

Parameters

id Return Value

AGE1438_SUCCESS indicates that a function was successful.

Values other than AGE1438_SUCCESS indicate an error condition or other important 
status condition. To determine the error message, pass the return value to “age1438_
error_message” on page 74.

See Also

“Commands which halt active measurements” on page 149, “age1438_init” on page 87, 
“age1438_clock_setup” on page 57
56



�� ��������������������������� �
Functions listed alphabetically
age1438_clock_setup

Sets all timing parameters for commonly used measurement setups. This description also 
includes a query: 

age1438_clock_setup_get

VXIplug&play Syntax

#include "age1438".h

ViStatus age1438_clock_setup(ViSession id, ViInt16 clockSetup);

ViStatus age1438_clock_setup_get(ViSession id, ViPInt16 clockSetupPtr);

Description

age1438_clock_setup is used to select the source and distribution of clocking and 
synchronization signals used by the HP E1438A module. The primary clock signal used by 
the module is the ADC clock, for which the rising edges indicate the time for each sample 
of the analog-to-digital converter.

This function changes the settings controlled by the following lower-level functions:

age1438_adc_clock
age1438_adc_divider
age1438_front_panel_clock_input
age1438_reference_clock
age1438_reference_prescaler
age1438_smb_clock_output
age1438_sync_clock
age1438_sync_direction
age1438_sync_output
age1438_vcxo
age1438_vxi_clock_output

Note This function does not alter settings made with age1438_vcxo_freq, but it does 

control whether the selected VCXO is actually running.

Setups using the external sample clock require the use of age1438_clock_fs to 

supply the clock frequency.

Parameters

id is the VXI instrument session pointer returned by the age1438_init function.

clockSetup This parameter provides a quick way to set up most of the timing parameters for several 
standard clock configurations. The following setups are available:
57



�� ��������������������������� �
Functions listed alphabetically
Simple clock setups for stand-alone modules

Internal reference

AGE1438_SIMPLE_INT_REF

ADC_CLK VCXO_INTERNAL

VCXO VCXO_ON

ADC_DIVIDER DIVIDE_BY_10

REFERENCE_PRESCALER PRESCALE_BY_1

VXI_CLK_OUTPUT CLOCK_OFF

REFERENCE_CLOCK N/A

FRONT_PANEL_CLOCK CLOCK_OFF

SMB_CLOCK_OUTPUT CLOCK_OFF

SYNC_CLOCK DIVIDED_ADC_CLOCK

SYNC_OUTPUT SYNC_OUT_OFF

SYNC_DIRECTION N/A

Phase locked to external reference

AGE1438_SIMPLE_EXT_REF

ADC_CLK VCXO_EXT_REF

VCXO VCXO_ON

ADC_DIVIDER DIVIDE_BY_10

REFERENCE_PRESCALER PRESCALE_BY_1

VXI_CLK_OUTPUT CLOCK_OFF

REFERENCE_CLOCK FRONT_PANEL_CLOCK

FRONT_PANEL_CLOCK BNC_CLOCK

SMB_CLOCK_OUTPUT CLOCK_OFF

SYNC_CLOCK DIVIDED_ADC_CLOCK

SYNC_OUTPUT SYNC_OUT_OFF

SYNC_DIRECTION N/A
58



�� ��������������������������� �
Functions listed alphabetically
Front panel master-slave setups, one master per mainframe

External sample clock

AGE1438_SIMPLE_EXT_SAMP

ADC_CLK EXT_SAMPLE_CLOCK

VCXO VCXO_OFF

ADC_DIVIDER DIVIDE_BY_10

REFERENCE_PRESCALER PRESCALE_BY_1

VXI_CLK_OUTPUT CLOCK_OFF

REFERENCE_CLOCK FRONT_PANEL_CLOCK

FRONT_PANEL_CLOCK BNC_CLOCK

SMB_CLOCK_OUTPUT CLOCK_OFF

SYNC_CLOCK DIVIDED_ADC_CLOCK

SYNC_OUTPUT SYNC_OUT_OFF

SYNC_DIRECTION N/A

Front master, internal reference

AGE1438_FRNT_MSTR_INT_REF

ADC_CLK VCXO_INTERNAL

VCXO VCXO_ON

ADC_DIVIDER DIVIDE_BY_10

REFERENCE_PRESCALER PRESCALE_BY_1

VXI_CLK_OUTPUT CLOCK_OFF

REFERENCE_CLOCK N/A

FRONT_PANEL_CLOCK CLOCK_OFF

SMB_CLOCK_OUTPUT DIVIDED_ADC_CLOCK

SYNC_CLOCK DIVIDED_ADC_CLOCK

SYNC_OUTPUT SYNC_OUT_SMB

SYNC_DIRECTION FRNT_TO_REAR
59



�� ��������������������������� �
Functions listed alphabetically
Front master, phase locked to external reference

AGE1438_FRNT_MSTR_EXT_REF

ADC_CLK VCXO_EXT_REF

VCXO VCXO_ON

ADC_DIVIDER DIVIDE_BY_10

REFERENCE_PRESCALER PRESCALE_BY_1

VXI_CLK_OUTPUT CLOCK_OFF

REFERENCE_CLOCK FRONT_PANEL_CLOCK

FRONT_PANEL_CLOCK BNC_CLOCK

SMB_CLOCK_OUTPUT DIVIDED_ADC_CLOCK

SYNC_CLOCK DIVIDED_ADC_CLOCK

SYNC_OUTPUT SYNC_OUT_SMB

SYNC_DIRECTION FRNT_TO_REAR

Front slave, phase locked to master

AGE1438_FRNT_SLAV_EXT_REF

ADC_CLK VCXO_EXT_REF

VCXO VCXO_ON

ADC_DIVIDER DIVIDE_BY_10

REFERENCE_PRESCALER PRESCALE_BY_1

VXI_CLK_OUTPUT CLOCK_OFF

REFERENCE_CLOCK FRONT_PANEL_CLOCK

FRONT_PANEL_CLOCK SMB_CLK

SMB_CLOCK_OUTPUT CLOCK_OFF

SYNC_CLOCK SMB_CLOCK

SYNC_OUTPUT SYNC_OUT_SMB

SYNC_DIRECTION FRNT_TO_REAR
60



�� ��������������������������� �
Functions listed alphabetically
Rear panel master-slave setups, one master per mainframe

Rear master, internal reference

AGE1438_REAR_MSTR_INT_REF

ADC_CLK VCXO_INTERNAL

VCXO VCXO_ON

ADC_DIVIDER DIVIDE_BY_10

REFERENCE_PRESCALER PRESCALE_BY_1

VXI_CLK_OUTPUT DIVIDED_ADC_CLOCK

REFERENCE_CLOCK N/A

FRONT_PANEL_CLOCK CLOCK_OFF

SMB_CLOCK_OUTPUT CLOCK_OFF

SYNC_CLOCK DIVIDED_ADC_CLOCK

SYNC_OUTPUT SYNC_OUT_VXI

SYNC_DIRECTION REAR_TO_FRNT

Rear master, phase locked to external reference

AGE1438_REAR_MSTR_EXT_REF

ADC_CLK VCXO_EXT_REF

VCXO VCXO_ON

ADC_DIVIDER DIVIDE_BY_10

REFERENCE_PRESCALER PRESCALE_BY_1

VXI_CLK_OUTPUT DIVIDED_ADC_CLOCK

REFERENCE_CLOCK FRONT_PANEL_CLOCK

FRONT_PANEL_CLOCK BNC_CLOCK

SMB_CLOCK_OUTPUT CLOCK_OFF

SYNC_CLOCK DIVIDED_ADC_CLOCK

SYNC_OUTPUT SYNC_OUT_VXI

SYNC_DIRECTION REAR_TO_FRNT
61



�� ��������������������������� �
Functions listed alphabetically
clockSetupPtr points to the current value of clockSetup.

AGE1438_CUSTOM_CLOCK_SETUP is returned from age1438_clock_setup_get when 
low-level clock configuration functions are used to set up clocks to a non-standard 
configuration.

Example

The program multichan.exe example program provides an example of how to correctly 
set up a multi-module system with synchronous clocks.

Return Value

AGE1438_SUCCESS indicates that a function was successful.

Values other than AGE1438_SUCCESS indicate an error condition or other important 
status condition. To determine the error message, pass the return value to “age1438_
error_message” on page 74.

Effect on Active Measurement

age1438_setup aborts any measurement in progress.

See Also

“Commands which halt active measurements” on page 149, “Default values” on page 152, 
“age1438_init” on page 87, “age1438_clock_fs” on page 55, “age1438_vcxo_freq” on 
page 141, “age1438_vcxo_freq_preset” on page 142, “age1438_clock_recover” on page 56, 
“Using clock and sync” in chapter 3, “Managing multiple modules” in chapter 3

Rear slave, phase locked to master

AGE1438_REAR_SLAV_EXT_REF

ADC_CLK VCXO_EXT_REF

VCXO VCXO_ON

ADC_DIVIDER DIVIDE_BY_10

REFERENCE_PRESCALER PRESCALE_BY_1

VXI_CLK_OUTPUT CLOCK_OFF

REFERENCE_CLOCK VXI_CLOCK

FRONT_PANEL_CLOCK CLOCK_OFF

SMB_CLOCK_OUTPUT CLOCK_OFF

SYNC_CLOCK VXI_CLOCK

SYNC_OUTPUT SYNC_OUT_VXI

SYNC_DIRECTION REAR_TO_FRNT
62



�� ��������������������������� �
Functions listed alphabetically
age1438_close

Closes the module’s software connection. 

VXIplug&play Syntax

#include "age1438".h

ViStatus age1438_close(ViSession id);

Description

age1438_close terminates the software connection to the module, deallocates system 
resources, and places the module in the Idle state. After this function has been executed 
the specified id identifier is no longer a valid parameter for function calls.

Parameters

id is the VXI instrument session pointer returned by the age1438_init function.

Return Value

AGE1438_SUCCESS indicates that a function was successful.

Values other than AGE1438_SUCCESS indicate an error condition or other important 
status condition. To determine the error message, pass the return value to “age1438_
error_message” on page 74.

See Also

“age1438_init” on page 87
63



�� ��������������������������� �
Functions listed alphabetically
age1438_data_memsize_get

Returns the module’s memory size in megabytes. 

VXIplug&play Syntax

#include "age1438".h

ViStatus age1438_data_memsize_get(ViSession id, ViPInt16 memSizePtr);

Description

This command allows you to determine whether your module contains standard memory 
of 18 Mbytes or a larger memory option.

Parameters

id is the VXI instrument session pointer returned by the age1438_init function.

memSizePtr points to the memory size in number of Megabytes.

Return Value

AGE1438_SUCCESS indicates that a function was successful.

Values other than AGE1438_SUCCESS indicate an error condition or other important 
status condition. To determine the error message, pass the return value to “age1438_
error_message” on page 74.

See Also

“age1438_init” on page 87, “age1438_data_setup” on page 66 
64



�� ��������������������������� �
Functions listed alphabetically
age1438_data_scale_get

Gets data scale factor. 

VXIplug&play Syntax

#include "age1438".h

ViStatus age1438_data_scale_get(ViSession id, ViPReal64 scalePtr);

Description

age1438_data_scale_get calculates the correct scale factor for raw data using the 
current data resolution and input range. The factor returned by this function is used to 
multiply raw data to get data in volts.

When the module is providing only the real part of complex data, the data is doubled to 
provide consistent spectrun measurements. This occurs with either shift decimation or 
when the real part of a zoomed signal with a non-zero center frequency is taken.

Parameters

id is the VXI instrument session pointer returned by the age1438_init function.

scalePtr points to the calculated scale factor with which to scale raw data to volts.

Return Value

AGE1438_SUCCESS indicates that a function was successful.

Values other than AGE1438_SUCCESS indicate an error condition or other important 
status condition. To determine the error message, pass the return value to “age1438_
error_message” on page 74.

See Also

“age1438_init” on page 87, “age1438_data_setup” on page 66, “age1438_read_raw” on 
page 115, “age1438_input_range_auto” on page 92, “age1438_filter_setup” on page 76
65



�� ��������������������������� �
Functions listed alphabetically
age1438_data_setup

Sets all format and data output flow parameters. This description also includes 
information on the following functions which set or query the format and flow parameters 
individually:

age1438_data_blocksize determines the size of the output data block.
age1438_data_blocksize_get gets the output data block size.
age1438_data_delay determines the FIFO delay in continuous mode.
age1438_data_delay_get gets the FIFO delay in continuous mode.
age1438_data_mode selects block mode or continuous mode. 
age1438_data_mode_get gets the data mode.
age1438_data_port selects VME bus or local bus output port.
age1438_data_port_get gets the output port designation.
age1438_data_resolution selects 12 or 24 bits data resolution.
age1438_data_resolution_get gets the data resolution.
age1438_data_type selects real or complex output data.
age1438_data_type_get gets output data type.

VXIplug&play Syntax

#include "age1438".h

ViStatus age1438_data_setup(ViSession id, ViInt16 dataType, ViInt16 resolution, 

ViInt16 mode, ViInt32 blocksize, ViInt32 dataDelay, ViInt16 reserved, ViInt16 

port);

ViStatus age1438_data_blocksize(ViSession id, ViInt32 blocksize);

ViStatus age1438_data_blocksize_get(ViSession id, ViPint32 blocksizePtr);

ViStatus age1438_data_delay(ViSession id, ViInt32 dataDelay);

ViStatus age1438_data_delay_get(ViSession id, ViPInt32 dataDelayPtr);

ViStatus age1438_data_mode(ViSession id, ViInt16 mode);

ViStatus age1438_data_mode_get(ViSession id, ViPInt16 modePtr);

ViStatus age1438_data_port(ViSession id, ViInt16 port);

ViStatus age1438_data_port_get(ViSession id, ViPInt16 portPtr);

ViStatus age1438_data_resolution(ViSession id, ViInt16 resolution);

ViStatus age1438_data_resolution_get(ViSession id, ViPInt16 resolutionPtr);

ViStatus age1438_data_type(ViSession id, ViInt16 dataType);

ViStatus age1438_data_type_get(ViSession id, ViPInt16 dataTypePtr);

Parameters

id is the VXI instrument session pointer returned by the age1438_init function.

blocksize determines the number of sample points in each output data block. 

AGE1438_BLOCKSIZE_MIN selects the minimum blocksize.

AGE1438_BLOCKSIZE_MAX selects the maximum blocksize.

AGE1438_BLOCKSIZE_DEF sets the default blocksize.

The range of available block sizes depends on the number of bytes required for each 
sample. The command accepts any number between 2 and memory size (in bytes) � 2/3. If 
the requested block size falls outside the range shown in the table the previous valid value 
is used and a status register flag (bit 6) is set indicating a setup error. The blocksize is 
updated after the setup is changed to be valid.
66



�� ��������������������������� �
Functions listed alphabetically
For real data blocksize is the number of real data values per data block. For complex data 
blocksize is the number of complex data pairs per data block.

The following table summarizes the available block sizes for each setting of the dataType, 
and resolution parameters. 

Note Block size must be an even number. Considerably more samples may need to be 

taken in order to set the block available status bit.

blocksizePtr points to the current value of the blocksize parameter. The returned value is the closest 
valid value to the requested block size. 

dataDelay is used to specify the minimum FIFO delay in number of samples. This parameter applies 
only in continuous mode. 

AGE1438_DATA_DELAY_MAX sets the maximum allowable delay.

AGE1438_DATA_DELAY_MIN sets the minimum allowable delay.

dataDelayPtr points to the current value of the delay parameter.

dataType determines whether the HP E1438A collects and returns real or complex data.

Setting this parameter to AGE1438_REAL causes only the real part of the data to be 
returned for each sample

 AGE1438_COMPLEX causes the real data followed by the imaginary data to be returned 
in each sample. 

Normally, if the frequency set with the age1438_frequency_setup function is zero, the 
type should be set to AGE1438_REAL since the imaginary component of each sample is 
zero anyway. When non-zero center frequencies are used the type should normally be set 
to AGE1438_COMPLEX, otherwise the imaginary component of the signal is lost.

when dataType is set to AGE1438_REAL and there is a non-zero center frequency the 
data scale value is doubled for consistent spectrum measurements

dataTypePtr points to the current value of the dataType parameter.

mode selects whether the HP E1438A’s data collection operates in block mode or continuous 
mode. 

data type resolution min. block size
max block size
in Msamples

(2 M*72 memory)a

a. Parity memory is used in non-parity mode, so 

2M�72 bit memory yields 18 Mbytes of FIFO stor-

age.

real 12 6 12

real 24 3 6

complex 12 3 6

complex 24 2 3
67



�� ��������������������������� �
Functions listed alphabetically
AGE1438_BLOCK selects block transfer mode in which the measurement is halted after 
each block of data. To start collection of the next data block the module must be armed 
and triggered again. This mode is used whenever each block of data is to be associated 
with an individual trigger event.

AGE1438_CONTINUOUS means that a single arm and trigger event starts a measurement 
which runs continuously with no gaps between output data blocks. As long as the data is 
read out fast enough to prevent overflow in the output FIFO, the measurement continues. 
The continuous mode is useful for continuous signal processing applications where data 
gaps are unacceptable.

modePtr points to the current value of the mode parameter.

reserved is a short integer which is reserved for future use and should be set to 0.

port determines which output port is used to take data from the HP E1438A module.

Setting port to AGE1438_VME means the data is to be output using standard VME register 
reads.

Setting port to AGE1438_LBUS means the data is to be output as a byte-serial data stream 
via the VXI local bus. When using the local bus port the module immediately to the right 
of the HP E1438A must be capable of receiving the local bus byte sequence.

portPtr points to the current value of the port parameter.

resolution selects data resolution of either 12 or 24 bits by using resolution values of AGE1438_
12BIT or AGE1438_24BIT respectively. Choosing 12-bit precision allows for more samples 
in the FIFO memory. Choosing 24 bits allows more dynamic range. Because of the 
broadband white noise present on the input of the analog-to-digital converter, it is 
normally sufficient to use 12 bit resolution whenever the age1438_filter_setup function 
specifies a signal bandwidth greater than 10 MHz. For narrower bandwidths much of the 
broadband white noise is filtered out, resulting in lower noise in the output data. To take 
advantage of this lower noise, you should use the 24-bit data resolution.

resolutionPtr points to the current value of the resolution parameter.

Comments

The following table summarizes the output word or byte sequence for each combination 
of dataType, resolution, and port parameters:

data type
data

resolution port
transfer
width pad bitsa xfersb sequencec

real 12 bit VME 16 bit 4 1 R0[15:4],R1[15:4],...

complex 12 bit VME 16 bit 4 2 R0[15:4],Q0[15:4],
R1[15:4],Q1[15:4],...

real 24 bit VME 16 bit 4 2 R0[31:16],R0[15:8],
R1[31:16],R1[15:8],...

complex 24 bit VME 16 bit 4 4 R0[31:16],R0[15:8],
Q0[31:16],Q0[15:8],
R1[31:16],R1[15:8],...
68



�� ��������������������������� �
Functions listed alphabetically
The maximum rate at which data may be transferred to memory is determined by the 
ADC clock rate: MaxBytes/s = 1.5 × (ADC clock rate). Divide MaxBytes/s by 1.5 to get the 
12-bit sample rate, and by 3 to get the 24-bit sample rate.

A limitation also applies to 32-bit, complex data transfers. Because this type of transfer 
cannot be made at the full sample rate, a level of decimation must be added in order to 
reduce the sample rate. 

The following table summarizes the relationship between data parameter combinations, 
decimation, filter bandwidth, precision, and whether the combination permits block or 
continuous measurements:

Note Continuous mode is only limited by the local bus transfer and read limitations of 

50 MBytes/s.

real 12 bit LBUS 32 bit 8 2 R0[15:8],R0[7:4],
R1[15:8],R1[7:4],...

complex 12 bit LBUS 32 bit 8 4 R0[15:8],R0[7:4],
Q0[15:8],Q0[7:4],
R1[15:8],...

real 24 bit LBUS 32 bit 8 4 R0[31:24],R0[23:16],
R0[15:8],R0[0:0],
R1[31;24],...

complex 24 bit LBUS 32 bit 8 8 R0[31:24],R0[23:16],
R0[15:8],R0[7:0],
Q0[31:24],Q0[23:16],
Q0[15:8],Q0[0:0],
R1[31:24],...

a. Number of least significant bits set to zero.

b.  That is, transfers required per measurement

c. Sequence Notation: R = real number transfer; Q = imaginary number 

transfer. Subscript denotes the measurement datum number. Brack-

eted indices show which measurement bits are contained in the trans-

fer, MSB first. A 12-bit sample is padded to 16 bits with zero placed in 

the 4 LSBs whereas a 24-bit sample is padded up to 32 bits with zero 

placed in the 8 LSBs. Example: For a 12-bit sample, R0[15:8] indicates 

the 8 MSBs of the sample are transferred in the first nibble. Then 

R0[7:4] indicates the 4 LSBs of the sample are transferred in the 4 

MSBs of second nibble (along with 4 zeros for padding). 

data type
data

resolution port
transfer
width pad bitsa xfersb sequencec

decimations filterBW
sample rate

(Msamples/s)
BW ��=100

MHz
12b real 24b real 12b complex 24b complex

n/a 0 100 40 b

1 1 50 20 b b

0 2 50 10 b b

1 2 25 10 b,c b b b
69



�� ��������������������������� �
Functions listed alphabetically
b = block mode

c = continuous mode to local bus

Return Value

AGE1438_SUCCESS indicates that a function was successful.

Values other than AGE1438_SUCCESS indicate an error condition or other important 
status condition. To determine the error message, pass the return value to “age1438_
error_message” on page 74.

See Also

“Commands which halt active measurements” on page 149, “Default values” on page 152, 
“age1438_init” on page 87, “age1438_frequency_setup” on page 83, “age1438_filter_setup” 
on page 76, “age1438_meas_control” on page 105, “age1438_clock_setup” on page 57 

0 3 25 5 b,c b b b

1 3 12.5 5 b,c b,c b,c b

0 4 12.5 2.5 b,c b,c b,c b

1 4 6.25 2.5 b,c b,c b,c b,c

0 5 6.25 1.25 b,c b,c b,c b,c

decimations filterBW
sample rate

(Msamples/s)
BW ��=100

MHz
12b real 24b real 12b complex 24b complex
70



�� ��������������������������� �
Functions listed alphabetically
age1438_data_xfersize

Allows data to be read before an entire block had been acquired. 

VXIplug&play Syntax

#include "age1438".h

ViStatus age1438_data_xfersize(ViSession id, ViInt32 xfersize);

ViStatus age1438_data_xfersize_get(ViSession id, ViPInt32 xfersizePtr);

Description

This command allows you to specify the allowable data transfer size in a situation where 
you want to read a large block of data in increments before an entire block has been 
acquired.

Parameters

id is the VXI instrument session pointer returned by the age1438_init function.

xfersize specifies the data transfer size in bytes.

AGE1438_XFERSIZE_MIN selects the minimum allowable transfer size.

AGE1438_XFERSIZE_MAX selects the maximum allowable transfer size. xfersize must 
be a sub-multiple of blocksize or an error is generated.

AGE1438_XFERSIZE_DEF sets the default transfer size.

Note xfersize is reset by any subsequent change in the blocksize parameter and 

therefore must be specified after blocksize. See “age1438_data_setup” on 

page 66. 

xfersizePtr points to the data transfer size in number of bytes.

Return Value

AGE1438_SUCCESS indicates that a function was successful.

Values other than AGE1438_SUCCESS indicate an error condition or other important 
status condition. To determine the error message, pass the return value to “age1438_
error_message” on page 74.

See Also

“Commands which halt active measurements” on page 149, “age1438_init” on page 87, 
“age1438_data_setup” on page 66
71



�� ��������������������������� �
Functions listed alphabetically
age1438_driver_debug_level

Sets and gets the debug level. 

VXIplug&play Syntax

#include "age1438".h

ViStatus age1438_driver_debug_level(ViSession id, ViInt16 debugLevel);

ViStatus age1438_driver_debug_level_get(ViSession id, ViPInt16 

debugLevelPtr);

Description

This command allows you to set and get debug levels. Debug messages are sent to the 
application debugger using the Windows kernel function Output Debug String.

Note This function only works under Windows.

This function only works with a debug build of the library.

Debug messages are received by the Microsoft Visual C++ debugger or can be 

received by the dbmon example program that comes with Microsoft Visual C++.

You can compile a DEBUG build by opening age1438_32.dsw, the Visual C++ project for 
the driver DLL, age1438_32.dll, and selecting the "age1438_32.dl-Win32 Debug" build 
configuration.

Parameters

id is the VXI instrument session pointer returned by the age1438_init function.

debugLevel is the debug level.

debugLevelPtr points to the value of debugLevel.

Debug levels are defined as follows:

Return Value

AGE1438_SUCCESS indicates that a function was successful.

Values other than AGE1438_SUCCESS indicate an error condition or other important 
status condition. To determine the error message, pass the return value to “age1438_
error_message” on page 74.

Debug Level Description

AGE1438_DEBUG_LEVEL_0 Only output errors and algorithmic results

AGE1438_DEBUG_LEVEL_1 Add output of setup function calls

AGE1438_DEBUG_LEVEL_2 Add output of measurement function calls 

AGE1438_DEBUG_LEVEL_3 Add output of status query function calls

AGE1438_DEBUG_LEVEL_4 Reserved

AGE1438_DEBUG_LEVEL_5 Add output of diagnostic function calls
72



�� ��������������������������� �
Functions listed alphabetically
See Also

“age1438_init” on page 87
73



�� ��������������������������� �
Functions listed alphabetically
age1438_error_message

Returns error information obtained from function calls.

VXIplug&play Syntax

#include "age1438".h

ViStatus age1438_error_message(ViSession id, ViStatus statusCode, ViChar 

errorMessage[]);

Description

age1438_error_message takes an error return value generated by a function and 
translates it to a readable string. This function includes host errors as well as firmware 
errors.

Parameters

id is the VXI instrument session pointer returned by the age1438_init function.

errorMessage represents the error message string up to 256 characters long.

Note For this parameter you must allocate a character array of at least 256 characters 

AGE1438_STR_LEN_MIN, including the null byte, prior to calling this function in 

any programming language.

statusCode represents the instrument numeric error code.

Return Value

AGE1438_SUCCESS indicates that a function was successful.

Values other than AGE1438_SUCCESS indicate an error condition or other important 
status condition. To determine the error message, pass the return value to “age1438_
error_message” on page 74.

See Also

“age1438_init” on page 87, “age1438_error_query” on page 75, “Error messages” on 
page 150
74



�� ��������������������������� �
Functions listed alphabetically
age1438_error_query

Queries the module for the first error in the queue. 

VXIplug&play Syntax

#include "age1438".h

ViStatus age1438_error_query(ViSession id, ViPint32 errorCode, ViChar 

errorMessage[]);

Description

age1438_error_query queries the module for the oldest error and returns the 
corresponding error message. This function does not report host errors that originate in 
the C library.

Parameters

id is the VXI instrument session pointer returned by the age1438_init function.

errorCode points to the instrument numeric error code.

errorMessage points to the error message string up to 80 characters long. This message also indicates 
what function call generated the error.

Note For this parameter you must allocate a character array of at least 256 characters 

AGE1438_STR_LEN_MIN, including the null byte, prior to calling this function in 

any programming language.

Return Value

AGE1438_SUCCESS indicates that a function was successful.

Values other than AGE1438_SUCCESS indicate an error condition or other important 
status condition. To determine the error message, pass the return value to “age1438_
error_message” on page 74.

See Also

“age1438_init” on page 87, “age1438_error_message” on page 74
75



�� ��������������������������� �
Functions listed alphabetically
age1438_filter_setup

Sets the digital filter bandwidth and decimation filter parameters. This description also 
includes information on the following functions which set or query the decimation filter 
parameters individually:

age1438_filter_decimate selects an extra factor of 2 decimation.
age1438_filter_decimate_get gets current state of extra decimation
age1438_filter_bw selects a signal filter bandwidth.
age1438_filter_bw_get gets the signal filter bandwidth

VXIplug&play Syntax

#include "age1438".h

ViStatus age1438_filter_setup(ViSession id, ViInt16 sigBw, ViInt16 decimate);

ViStatus age1438_filter_decimate(ViSession id, ViInt16 decimate);

ViStatus age1438_filter_decimate_get(ViSession id, ViPInt16 decimatePtr);

ViStatus age1438_filter_bw(ViSession id, ViInt16 sigBw);

ViStatus age1438_filter_bw_get(ViSession id, ViPInt16 sigBwPtr);

Parameters

id is the VXI instrument session pointer returned by the age1438_init function.

decimate selects the data output sample rate. When this parameter is set to AGE1438_DECIMATE_
OFF the output sample rate is:

fs when sigBw=0, or

fs/2^(sigBw-1) when sigBw>0

When decimate is set to AGE1438_DECIMATE_ON the output sample rate is reduced by 
an additional factor of two by discarding alternate samples. 

AGE1438_DECIMATE_SHIFT is like AGE1438_DECIMATE_ON but additional processing 
is performed that shifts the center frequency of zoomed data up by fs/4 and transforms 
the complex data stream into a real data stream without losing phase information. For 
consistent spectrum measurements the data scale value is doubled when using shift 
decimate.

decimatePtr points to the current value of the decimate parameter. 

sigBw selects an alias protected signal filter bandwidth that is roughly ±fs/(2.56 × 2^(sigBw)) 
where fs is the ADC sample frequency. In zoom applications, where the center frequency 
is generally not zero, the zoom filter bandwidth is centered on the frequency programmed 
with the age1438_frequency_setup function. For baseband measurements the filter 
may equivalently be considered as a low pass filter of approximately bandwidth fs/(2.56 × 
2^(sigBw)) since the negative frequencies are generally of no interest. The valid range of 
sigBw is 0 through 18. When sigBw = 0, no digital filtering is applied to the signal and the 
module relies on the analog anti-alias filter to limit the signal bandwidth to fs/2.56.

To more accurately calculate the bandwidth use the calculation ±fs × k/2^(sigBw) where:

-B�%7������"6��C�)��������
-B�$$�����%��C�)��������
-B�6������6��C�)��������
76



�� ��������������������������� �
Functions listed alphabetically
-B�7"�������4��C�)��������

AGE1438_SIG_BW_MAX sets sigBw to the maximum value and the filter bandwidth to 
the minimum.

AGE1438_SIG_BW_MIN sets sigBw to the minimum value and filter bandwidth to the 
maximum.

sigBwPtr points to the current value of the sigBw parameter. 

Caution Selecting AGE1438_DECIMATE_ON when sigBw=0 results in aliasing (garbage 

data) due to upper limit of the sampling frequency and, therefore, causes the 

SETUP_ERROR bit to be set.

Selecting AGE1438_DECIMATE_SHIFT for non-zoomed data is not a useful 

configuration.

Comments

To ensure full alias-free operation the analog anti-alias filter (set by the age1438_input_

alias_filter function) should be ON unless the application inherently bandlimits the input 
signal to less than fs/2. The analog anti-alias filter has a fixed bandwidth and thus is fully 
effective only when fs � 100 MHz. If a slower external ADC clock is used, an additional 
analog filter of the appropriate bandwidth may be required for full alias protection.

The decimation process used to reduce the output sample rate is driven from a 
"decimation counter" which keeps track of which samples to save and which ones to 
discard for each of the octave bandwidth reduction filter stages. In multi-module systems 
where synchronous sampling is required, the decimation counters in all the modules must 
be synchronous with each other. This condition can be forced by using the age1438_

filter_sync function.

The following table lists parameter combinations (see also “age1438_data_setup” on 
page 66) which result in invalid measurement conditions:

All other combinations are valid.

Example

Here are some bandwidth and sample rate results using the "k" calculation for bandwidth:

fs = 100 MHz default internal ADC clock (all data in MHz)

Invalid parameter combinations

resolution
(bits)

dataType decimate sigBw

12 or 24 REAL or COMPLEX OFF or SHIFT 1

12 or 24 REAL or COMPLEX ON or SHIFT 0

12 or 24 COMPLEX any 0

24 REAL or COMPLEX OFF 2

24 REAL or COMPLEX any 0 or 1

12 or 24 COMPLEX SHIFT any
77



�� ��������������������������� �
Functions listed alphabetically
Return Value

AGE1438_SUCCESS indicates that a function was successful.

Values other than AGE1438_SUCCESS indicate an error condition or other important 
status condition. To determine the error message, pass the return value to “age1438_
error_message” on page 74.

See Also

“Commands which halt active measurements” on page 149, “Default values” on page 152, 
“age1438_init” on page 87, “age1438_input_setup” on page 95, “age1438_clock_setup” on 
page 57, “age1438_frequency_setup” on page 83, “age1438_filter_sync” on page 79, 
“age1438_data_setup” on page 66, “Frequency and filtering” in chapter 3

Signal Bandwidth
MHz

Sample Rate
Msample/s

sigBw .25 dB 15 dB Decimate OFF Decimate ON

1 �18 �25 N/A 50

2 �9 ��2.5 50 25

3 �4.5 �6.25 25 12.5

4 �2.25 �3.125 12.5 6.5

>4 Continue to decimate by factors of two
78



�� ��������������������������� �
Functions listed alphabetically
age1438_filter_sync

Synchronizes the decimation counter for multi-module systems. 

VXIplug&play Syntax

#include "age1438".h

ViStatus age1438_filter_sync(ViSession id);

Description

This function causes the digital decimation counter to be reset by the next Sync line rising 
transition. By calling age1438_filter_sync for every HP E1438A module using a shared 
ADC clock, and then calling age1438_meas_control to cause a sync transition, the 
decimation counters are prepared to start at the same time. Once this is done the 
decimation counters stay synchronized as long as the same ADC clock is used. You do not 
need to resynchronize the decimation counters when the digital filter bandwidths are 
changed.

Note Resetting the decimation counter causes a transient in the digital filters. The 

transient takes about 30 decimated output sample periods to decay 100 dB. See 

the step response graphs in the Technical Specifications for more detail.

Parameters

id is the VXI instrument session pointer returned by the age1438_init function.

Comment

The correct procedure for using this command is:

1. Force all modules to idle using age1438_meas_control.

2. Call age1438_filter_sync for all modules.

3. Cause a sync transition with one module using age1438_meas_control without 

releasing force to idle.

4. Release force to idle on all modules.

If you also want to synchronize frequency or phase see age1438_frequency_setup. This 
procedure also applies to those commands for multi-module systems.

Example

The multichan.exe example program provides an example of how to correctly set up a 
multi-module system with synchronous filters.

Return Value

AGE1438_SUCCESS indicates that a function was successful.

Values other than AGE1438_SUCCESS indicate an error condition or other important 
status condition. To determine the error message, pass the return value to “age1438_
error_message” on page 74.
79



�� ��������������������������� �
Functions listed alphabetically
See Also

“age1438_init” on page 87, “age1438_filter_setup” on page 76, “age1438_frequency_setup” 
on page 83, “age1438_meas_control” on page 105, “Managing multiple modules” in 
chapter 3
80



�� ��������������������������� �
Functions listed alphabetically
age1438_frequency_center_raw

Provides a fast way to set the center frequency

VXIplug&play Syntax

#include "age1438".h

ViStatus age1438_frequency_center_raw(ViSession id, ViInt32 phase, ViInt32 

interpolate);

ViStatus age1438_frequency_center_raw_get(ViSession id, ViPInt32 phasePtr, 

ViPInt32 interpolatePtr);

Description

age1438_frequency_center_raw sets the center frequency without relying on the 
internal HP E1438A microprocessor to do floating point computations, since the internal 
microprocessor does not have a floating point co-processor.

Note This command is not available in HP-VEE.

Parameters

id is the VXI instrument session pointer returned by the age1438_init function.

phase specifies the phase part of the frequency.

interpolate specifies the interpolation part of the frequency.

phasePtr points to the current actual value of phase. 

interpolatePtr points to the value of interpolate. 

Comments

The following C code segment shows how to compute these parameters, where freq is 
(center frequency/sample rate):

static void rawFreq(double freq, long *phase, long *interpolate)

{

long ph, in;

freq *= -1048576.0;

ph = (long)fabs(freq);

in = (long)(((fabs(freq)-(double)ph)*48828125.0)+0.5);

if (freq < 0)

{

ph = -1 - ph;

if (in !=0);

in = 48828125 - in;

else;

ph = ph + 1;

}

*phase = ph;

""
81



�� ��������������������������� �
Functions listed alphabetically
*interpolate = in;

return;

}

The equivalent Visual Basic example follows:

Private Sub rawFreq(dblFreq as Double)

Dim dblFx As Double

Dim lngIn As Long

Dim lngPh As Long

dblFx = -1048576# * dblFreq

lngPh = Fix(Abs(dblFx))

lngIn = Fix(((Abs(dblFx) - CDbl(lngPh)) * 48828125#) + 0.5) 

If (dblFx < 0) Then

lngPh = (-1) - lngPh

If (lngIn) Then

lngIn = 48828125 - lngIn

Else

lngPh = lngPh + 1

End If

End If

Call age1438_frequency_center_raw(lngId, lngPh, lngIn)

End Sub

Example

An example of this in VB is included in the Front Panel code and can be activated by 
changing the following declaration in frmMain of E1438.vbp.

Const constFreqCentRaw = False   ’When TRUE, set center frequency with

’age1438_frequency_center_raw()instead of

’age1438_frequency_center()

Return Value

AGE1438_SUCCESS indicates that a function was successful.

Values other than AGE1438_SUCCESS indicate an error condition or other important 
status condition. To determine the error message, pass the return value to “age1438_
error_message” on page 74.

See Also

“age1438_init” on page 87, “age1438_frequency_setup” on page 83
82



�� ��������������������������� �
Functions listed alphabetically
age1438_frequency_setup

Sets all the zoom center frequency parameters. This description also includes information 
on the following functions which set or query frequency parameters individually:

age1438_frequency_center sets the center frequency
age1438_frequency_center_get gets the current center frequency
age1438_frequency_cmplxdc selects a complex baseband measurement
age1438_frequency_cmplxdc_get gets the state of the baseband measurement 

mode
age1438_frequency_sync prepares the module for a synchronous frequency 

change
age1438_frequency_sync_get gets the state of the synchronous change mode

VXIplug&play Syntax

#include "age1438".h

ViStatus age1438_frequency_setup(ViSession id, ViInt16 cmplxDC, ViInt16 sync, 

ViReal64 centerFreq);

ViStatus age1438_frequency_center(ViSession id, ViReal64 centerFreq);

ViStatus age1438_frequency_center_get(ViSession id, ViPReal64 centerFreqPtr);

ViStatus age1438_frequency_cmplxdc(ViSession id, ViInt16 cmplxDC);

ViStatus age1438_frequency_cmplxdc_get(ViSession id, ViPInt16 cmplxDCPtr);

ViStatus age1438_frequency_sync(ViSession id, ViInt16 sync);

ViStatus age1438_frequency_sync_get(ViSession id, ViPInt16 syncPtr);

Description

age1438_frequency_setup sets the center frequency of a zoomed measurement. The 
center of a frequency band of interest is converted to dc with this function. The frequency 
transition is phase continuous unless the center frequency is set to zero in which case the 
transition may be selected either to be phase continuous or phase reset. This function 
may also be used to synchronously change frequency in multiple-module systems.

Parameters

id is the VXI instrument session pointer returned by the age1438_init function.

cmplxDC selects either a phase continuous or phase reset transition when freq=0.

AGE1438_CMPLXDC_OFF, combined with a frequency change to zero, causes phase to 
be reset to zero.

AGE1438_CMPLXDC_ON, combined with a frequency change to zero, does not reset the 
phase thereby generating a complex dc measurement at baseband. The state of this 
parameter does not affect any transition where freq is nonzero. Whether the real or 
complex data is saved and ultimately sent to the output port is determined by the 
age1438_data_type function

cmplxDCPtr points to the current actual value of cmplxDC. 

sync when set to AGE1438_SYNC_OFF allows an immediate frequency change in single-
module systems. 
83



�� ��������������������������� �
Functions listed alphabetically
In multiple-module systems, setting this parameter to AGE1438_SYNC_ON prepares the 
modules for a frequency change, but does not actually bring about the change until the 
next ADC clock corresponding to the next assertion of the shared Sync signal. The Sync 
transition is generated by calling the age1438_meas_control function. Note that 
returning sync to OFF before the Sync signal transition has occurred forces an immediate 
asynchronous frequency change. 

syncPtr points to the value of sync. 

centerFreq supplies the center frequency normalized to the sample frequency. It is a number between 
�0.5 and +0.5, which is interpreted as a fraction of the sample frequency. centerFreq is the 
desired center frequency divided by the ADC sample frequency. For example, selecting  
0.25 with a sample clock frequency of 100 MHz yields a center frequency of 25 MHz. The 
ADC sample frequency is returned by the age1438_clock_fs_get function. Negative 
frequencies select the negative image of the signal, which is spectrally inverted from the 
input signal. 

AGE1438_CENT_FREQ_MIN selects the minimum allowable center frequency.

AGE1438_CENT_FREQ_MAX selects the maximum allowable center frequency.

AGE1438_CENT_FREQ_DEF sets the default center frequency.

centerFreqPtr points to the current actual value of the center frequency (as a fraction of the sample 
clock frequency).

Comments

Although the freq parameter is a double precision floating point number, its effective 
resolution is 1/(2^19 × 5^11). This allows exact specification of any multiple of 1 mHz 
when fs=100 or 102.4 MHz. The actual frequency is set to the nearest available value. This 
value is returned by the age1438_frequency_center_get function. In multi-module 
systems this value represents the pending value rather than the current value when a 
frequency change is incomplete due to a pending Sync signal transition.

In multiple-module systems it is often desirable to force the frequency change to occur 
synchronously in order to preserve the phase relationship of the LOs. You may 
accomplish this by setting the sync parameter to ON for all the modules which are to be 
changed. 

In configurations involving synchronous operation of multiple HP E1438A modules, the 
age1438_frequency_setup function provides a mechanism to force all LOs to the same 
phase. You can do this by first setting the frequency to zero.

Example

The example program multichan.exe shows how to correctly perform synchronous 
frequency changes in a multi-module system.

Return Value

AGE1438_SUCCESS indicates that a function was successful.

Values other than AGE1438_SUCCESS indicate an error condition or other important 
status condition. To determine the error message, pass the return value to “age1438_
error_message” on page 74.
84



�� ��������������������������� �
Functions listed alphabetically
See Also

“Default values” on page 152, “age1438_init” on page 87, “age1438_clock_setup” on 
page 57, “age1438_data_setup” on page 66, “age1438_clock_fs” on page 55, “age1438_
meas_control” on page 105, “Frequency and filtering” in chapter 3
85



�� ��������������������������� �
Functions listed alphabetically
age1438_front_panel_clock_input

Specifies the source for the front panel clock. This description also includes the query 
function:

age1438_front_panel_clock_input_get

VXIplug&play Syntax

#include "age1438".h

ViStatus age1438_front_panel_clock_input(ViSession id, ViInt16 fpClock);

ViStatus age1438_front_panel_clock_input_get(ViSession id, ViPInt16 

fpClockPtr);

Note This command should be used only for specialized custom clock requirements. 

Most useful clock setups can be supplied by age1438_clock_setup.

Description

This function selects a front panel clock source that is used to drive the analog to digital 
converter (ADC) for single module operation or when a module is used as the master 
ADC clock source for a multi-module system.

Parameters

id is the VXI instrument session pointer returned by the age1438_init function.

fpClock AGE1438_CLOCK_OFF specifies no front panel source.

AGE1438_SMB_CLOCK specifies clock input from the front panel Intermodule 
Clock/SMB connectors.

AGE1438_BNC_CLOCK specifies clock input from the front panel Ext Clock/Ref BNC 
connector.

fpClockPtr returns a pointer to the current value of fpClock.

Return Value

AGE1438_SUCCESS indicates that a function was successful.

Values other than AGE1438_SUCCESS indicate an error condition or other important 
status condition. To determine the error message, pass the return value to “age1438_
error_message” on page 74.

See Also

“Commands which halt active measurements” on page 149, “Default values” on page 152, 
“age1438_init” on page 87, “age1438_clock_setup” on page 57, “Using clock and sync” in 
chapter 3
86



�� ��������������������������� �
Functions listed alphabetically
age1438_init

Initializes the I/O driver for a module. 

VXIplug&play Syntax

#include "age1438".h

ViStatus age1438_init(ViRsrc rsrcName, ViBoolean idQuery, ViBoolean 

resetInstr, ViPSession id);

Description

age1438_init must be the first routine called when you use the HP E1438A library. It 
establishes communication with the module and returns a module identification which is 
used with all subsequent functions involving this module. This function performs 
whatever initialization the I/O driver needs for the environment in which this library is 
running.

Parameters

id is a pointer to the VXI instrument Session identifier returned by this function for the 
module. This identifier is then used with all other functions which address this module. 
This value is not a VISA id and so cannot be used with VISA functions. Use age1438_
attrib_get to get the VISA id.

idQuery set to AGE1438_ON verifies the identity of the instrument by checking the manufacturer 
ID and model number in the module’s VXI register set. 

If set to AGE1438_OFF the function does not verify the module’s identity. It is helpful to 
disable the ID query if you want to use the driver with a similar module but do not need to 
modify the driver source code.

resetInstr places the module in the reset state when set to AGE1438_ON. 

If set to AGE1438_OFF, the function disables the reset. Disabling the reset is useful for 
debugging in cases where resetting would take the instrument out of the state you want to 
test.

rsrcName specifies the interface and logical address. This descriptor varies depending on your I/O 
library.

An example of the descriptor form for the VISA I/O library is:

VXI[Board]::VXIlogical address [::INSTR] 

Comments

If you receive a resource descriptor error, see your I/O library documentation to 
determine the correct descriptor form.

Return Value

AGE1438_SUCCESS indicates that a function was successful.
87



�� ��������������������������� �
Functions listed alphabetically
Values other than AGE1438_SUCCESS indicate an error condition or other important 
status condition. To determine the error message, pass the return value to “age1438_
error_message” on page 74.

See Also

“Commands which halt active measurements” on page 149, “age1438_close” on page 63, 
“age1438_attrib_get” on page 53
88



�� ��������������������������� �
Functions listed alphabetically
age1438_input_autozero

Nulls out the input dc offset voltage (applies to baseband input configuration only).

VXIplug&play Syntax

#include "age1438".h

ViStatus age1438_input_autozero(ViSession id);

Description

age1438_input_autozero updates a table of dc offset corrections to be used with each 
input setup condition. The applicable correction from this table is automatically added to 
the input offset parameter to achieve the correct dc offset value. Because of the length of 
time needed to execute this function, it is not automatically called when the module is 
reset. Thus, the user program is responsible for explicitly initiating the auto zero. This 
function should be called at least once after the temperature of the module has stabilized. 
The interval between calls after that depends on the importance of dc accuracy in the 
user application. It is not necessary to call the auto zero function for every change of 
input setup parameters since the correction table maintains values for all setup 
conditions.

Note Calling age1438_input_autozero aborts any measurement already in progress 

and eliminates LO phase coherence and filter synchronization in a synchronous 

multi-module system. See the age1438_filter_sync and age1438_frequency_sync 

functions for details on how to re-establish LO phase coherence and filter 

synchronization.

Calling this function deletes any saved state.

Parameters

id is the VXI instrument session pointer returned by the age1438_init function.

Return Value

AGE1438_SUCCESS indicates that a function was successful.

Values other than AGE1438_SUCCESS indicate an error condition or other important 
status condition. To determine the error message, pass the return value to “age1438_
error_message” on page 74.

See Also

“Commands which halt active measurements” on page 149, “age1438_init” on page 87, 
“age1438_input_setup” on page 95, “age1438_filter_sync” on page 79, “age1438_
frequency_setup” on page 83
89



�� ��������������������������� �
Functions listed alphabetically
age1438_input_offset

Sets the dc offset DAC setting for the current range. This description also includes the 
query:

age1438_input_offset_get

VXIplug&play Syntax

#include "age1438".h

ViStatus age1438_input_offset(ViSession id, ViInt16 coarseDac, ViInt16 

fineDac);

ViStatus age1438_input_offset_get(ViSession id, ViPInt16 coarseDacPtr, 

ViPInt16 fineDacPtr);

Description

These values are normally set by age1438_input_autozero so you generally would use this 
command only for special situations. The resultant values can be saved to non-volatile 
RAM with age1438_input_offset_save.

Each ac coupling range has a unique DAC setting. All dc coupling ranges use the same 
DAC setting as the highest range setting for ac coupling. The scaling between the coarse 
and fine DACs is approximately 100 to 1. 

AGE1438_OFFS_DAC_MIN sets the minimum dc offset DAC setting.

AGE1438_OFFS_DAC_MAX sets the maximum dc offset DAC setting.

Parameters

id is the VXI instrument session pointer returned by the age1438_init function.

coarseDac sets values of 0 to 255.

fineDac sets values of 0 to 255.

coarseDacPtr returns a pointer to the current value of coarseDac

fineDacPtr returns a pointer to the current value of fineDac

Return Value

AGE1438_SUCCESS indicates that a function was successful.

Values other than AGE1438_SUCCESS indicate an error condition or other important 
status condition. To determine the error message, pass the return value to “age1438_
error_message” on page 74.

See Also

“Default values” on page 152, “age1438_init” on page 87, “age1438_input_autozero” on 
page 89, “age1438_input_offset_save” on page 91
90



�� ��������������������������� �
Functions listed alphabetically
age1438_input_offset_save

Saves all DAC offset settings to non-volatile RAM.

VXIplug&play Syntax

#include "age1438".h

ViStatus age1438_input_offset_save(ViSession id);

Description

Use this command if you want DAC offset settings to persist past power-down.

Parameters

id is the VXI instrument session pointer returned by the age1438_init function.

Return Value

AGE1438_SUCCESS indicates that a function was successful.

Values other than AGE1438_SUCCESS indicate an error condition or other important 
status condition. To determine the error message, pass the return value to “age1438_
error_message” on page 74.

See Also

“age1438_init” on page 87, “age1438_input_setup” on page 95, “age1438_input_offset” on 
page 90
91



�� ��������������������������� �
Functions listed alphabetically
age1438_input_range_auto

Performs auto-ranging (applies to baseband input configuration only).

VXIplug&play Syntax

#include "age1438".h

ViStatus age1438_input_range_auto(ViSession id, ViReal64 sec);

Description

age1438_input_range_auto sets the range of a HP E1438A to the lowest value that does 
not cause an ADC overload to occur. The algorithm starts at the lowest range and moves 
up until there is no ADC overload.

Note Calling this function deletes any saved state.

Parameters

id is the VXI instrument session pointer returned by the age1438_init function.

sec is the time in seconds to take data at each range to insure that an overload is detected. 
Setting this parameter to 0.0 results in the time being set automatically according to an 
algorithm that depends on block size and filter bandwidth. 

AGE1438_RANGE_TIME_MIN selects the minimum autorange time.

AGE1438_RANGE_TIME_MAX selects the maximum autorange time.

Return Value

AGE1438_SUCCESS indicates that a function was successful.

Values other than AGE1438_SUCCESS indicate an error condition or other important 
status condition. To determine the error message, pass the return value to “age1438_
error_message” on page 74.

See Also

“Commands which halt active measurements” on page 149, “age1438_init” on page 87, 
“age1438_input_setup” on page 95
92



�� ��������������������������� �
Functions listed alphabetically
age1438_input_range_convert

Converts the input range to volts.

VXIplug&play Syntax

#include "age1438".h

ViStatus age1438_input_range_convert(ViSession id, ViInt16 rangeIndex, 

ViPReal64 rangeVoltsPtr);

Description

age1438_input_range_convert converts the range of a HP E1438A 

Parameters

id is the VXI instrument session pointer returned by the age1438_init function.

rangeIndex is the input range returned by age1438_input_range_get. 

rangeVoltsPtr is the range in Volts.

Conversion values are as follows:

Variable Range Index
Full Scale

(dBm)
Full Scale

Voltage (Vp)

AGE1438_RANGE_MAX 17

AGE1438_RANGE_17 17 30 10.0

AGE1438_RANGE_16 16 27 7.08

AGE1438_RANGE_15 15 24 5.01 

AGE1438_RANGE_14 14 21 3.55 

AGE1438_RANGE_13 13 18 2.51

AGE1438_RANGE_12 12 15 1.78

AGE1438_RANGE_11 11 12 1.26

AGE1438_RANGE_10 10 9 .891

AGE1438_RANGE_9 9 6 .631

AGE1438_RANGE_8 8 3 .447

AGE1438_RANGE_7 7 0 .316

AGE1438_RANGE_6 6 �3 .224

AGE1438_RANGE_5 5 �6 .158

AGE1438_RANGE_4 4 �9 .112

AGE1438_RANGE_3 3 �12 .0794

AGE1438_RANGE_2 2 �15 .0562

AGE1438_RANGE_1 1 �18 .0398

AGE1438_RANGE_0 0 �21 .0282

AGE1438_RANGE_MIN 0
93



�� ��������������������������� �
Functions listed alphabetically
Note These values are approximate. For more accuracy use age1438_data_scale_get.

Return Value

AGE1438_SUCCESS indicates that a function was successful.

Values other than AGE1438_SUCCESS indicate an error condition or other important 
status condition. To determine the error message, pass the return value to “age1438_
error_message” on page 74.

See Also

“age1438_init” on page 87, “age1438_input_setup” on page 95, “age1438_data_scale_get” 
on page 65
94



�� ��������������������������� �
Functions listed alphabetically
age1438_input_setup

Sets all the analog input parameters. This description also includes information on the 
following functions which set or query the input parameters individually:

age1438_input_alias_filter selects or bypasses the built-in analog anti-alias filter
age1438_input_alias_filter_get gets the anti-alias filter state
age1438_input_coupling selects ac or dc input coupling
age1438_input_coupling_get get the input coupling type
age1438_input_range sets the full scale range
age1438_input_range_get gets the input range
age1438_input_signal connect/disconnect the input signal to the input amplifier
age1438_input_signal_get gets the input buffer amplifier state

VXIplug&play Syntax

#include "age1438".h

ViStatus age1438_input_setup(ViSession id, ViInt16 reserved, ViInt16 range, 

ViInt16 coupling, ViInt16 antiAlias, ViInt16 signal);

ViStatus age1438_input_alias_filter(ViSession id, ViInt16 antiAlias);

ViStatus age1438_input_alias_filter_get(ViSession id, ViPInt16 antiAliasPtr);

ViStatus age1438_input_coupling(ViSession id, ViInt16 coupling);

ViStatus age1438_input_coupling_get(ViSession id, ViPInt16 couplingPtr);

ViStatus age1438_input_range(ViSession id, ViInt16 range);

ViStatus age1438_input_range_get(ViSession id, ViPInt16 rangePtr);

ViStatus age1438_input_signal(ViSession id, ViInt16 signal);

ViStatus age1438_input_signal_get(ViSession id, ViPInt16 signalPtr);

Parameters

id is the VXI instrument session pointer returned by the age1438_init function.

antiAlias determines whether or not to use the built-in analog anti-alias filter. This parameter 
applies to the baseband input configuration only.

AGE1438_ANTIALIAS_ON inserts a sharp-cutoff (9-pole) 40 MHz lowpass filter ahead of 
the analog-to-digital converter. 

AGE1438_ANTIALIAS_OFF replaces this filter with a soft-cutoff 3-pole low-pass filter. It 
is recommended that you leave the filter on at all times to insure band-limited, anti-aliased 
data.

antiAliasPtr points to the current value of the antiAlias parameter.

coupling specifies the ac or dc coupling mode of the input. This parameter applies to the baseband 
input configuration only. 

AGE1438_DC connects the input directly to the 50 Ohm buffer amplifier. 

AGE1438_AC inserts a 0.2 µF capacitor between the input connector and the 50 Ohm 
buffer amplifier.

couplingPtr points to the current value of the coupling parameter for an HP E1438A or group of 
HP E1438As.
95



�� ��������������������������� �
Functions listed alphabetically
range is a range index number between 0 and 17 which is transformed to a full scale voltage 
value. 

AGE1438_RANGE_MAX sets the range to the maximum allowable.

AGE1438_RANGE_MIN sets the range to the minimum allowable.

Signal inputs with an absolute value larger than full scale generate an ADC overflow error.

Range values are as follows.

These values are approximate. For more accuracy use age1438_data_scale_get.

rangePtr points to the current value of the range parameter.

signal determines whether or not the input signal is connected to the input amplifier. 

AGE1438_SIGNAL_ON attaches the input signal to the 50 Ohm buffer amplifier.

AGE1438_SIGNAL_OFF redirects the input signal to a dummy 50 Ohm load, and feeds the 
buffer amplifier from an internally grounded 50 Ohm source resistance. The signal OFF 
setting is useful for making reference measurements without the signal applied. When 
using ac coupling the 0.2 µF capacitor remains between the input connector and its 50 
Ohm termination.

signalPtr points to the current value of the signal parameter.

Comments

Variable Range Index
Full Scale

(dBm)
Full Scale

Voltage (Vp)

AGE1438_RANGE_MAX 17

AGE1438_RANGE_17 17 30 10.0

AGE1438_RANGE_16 16 27 7.08

AGE1438_RANGE_15 15 24 5.01 

AGE1438_RANGE_14 14 21 3.55 

AGE1438_RANGE_13 13 18 2.51

AGE1438_RANGE_12 12 15 1.78

AGE1438_RANGE_11 11 12 1.26

AGE1438_RANGE_10 10 9 .891

AGE1438_RANGE_9 9 6 .631

AGE1438_RANGE_8 8 3 .447

AGE1438_RANGE_7 7 0 .316

AGE1438_RANGE_6 6 �3 .224

AGE1438_RANGE_5 5 �6 .158

AGE1438_RANGE_4 4 �9 .112

AGE1438_RANGE_3 3 �12 .0794

AGE1438_RANGE_2 2 �15 .0562

AGE1438_RANGE_1 1 �18 .0398

AGE1438_RANGE_0 0 �21 .0282

AGE1438_RANGE_MIN 0
96



�� ��������������������������� �
Functions listed alphabetically
To ensure full alias-free operation the analog anti-alias filter should be ON unless the 
application inherently bandlimits the input signal to less than fs/2. The analog anti-alias 
filter has a fixed bandwidth and thus is fully effective only when fs � 100 MHz. If a slower 
external ADC clock is used, an additional analog filter of the appropriate bandwidth may 
be required for full alias protection.

When using the analog anti-alias filter, you  may need to set the range parameter higher 
than the actual range of the input signal. The reason for this is that step changes of input 
voltage cause an overshoot and ringing response at the output of the anti-alias filter. The 
peak overshoot actually exceeds the input voltage step by about 20%. The range setting 
must accommodate this overshoot to avoid an ADC overflow.

Return Value

AGE1438_SUCCESS indicates that a function was successful.

Values other than AGE1438_SUCCESS indicate an error condition or other important 
status condition. To determine the error message, pass the return value to “age1438_
error_message” on page 74.

See Also

“age1438_init” on page 87, “age1438_input_autozero” on page 89, “age1438_input_range_
auto” on page 92, “age1438_input_range_convert” on page 93, “age1438_data_scale_get” 
on page 65
97



�� ��������������������������� �
Functions listed alphabetically
age1438_interrupt_restore

Restores the interrupt masks to the setting last programmed with age1438_interrupt_

setup.

VXIplug&play Syntax

#include "age1438".h

ViStatus age1438_interrupt_restore(ViSession id);

Description

The interrupt masks set by the age1438_interrupt_setup function are cleared during 
the interrupt acknowledge cycle. This function restores the cleared interrupt masks.

Parameters

id is the VXI instrument session pointer returned by the age1438_init function.

Return Value

AGE1438_SUCCESS indicates that a function was successful.

Values other than AGE1438_SUCCESS indicate an error condition or other important 
status condition. To determine the error message, pass the return value to “age1438_
error_message” on page 74.

See Also

“age1438_init” on page 87, “age1438_interrupt_setup” on page 99
98



�� ��������������������������� �
Functions listed alphabetically
age1438_interrupt_setup

Sets both interrupt parameters. This description also includes information on the 
following functions which query the interrupt parameters individually: 

age1438_interrupt_mask_get gets the interrupt event mask
age1438_interrupt_priority_get gets the VME interrupt line

VXIplug&play Syntax

#include "age1438".h

ViStatus age1438_interrupt_setup(ViSession id, ViInt16 intrNum, ViInt16 

priority, ViInt16 mask);

ViStatus age1438_interrupt_mask_get(ViSession id, ViInt16 intrNum, ViPInt16 

maskPtr);

ViStatus age1438_interrupt_priority_get(ViSession id, ViInt16 intrNum, 

ViPInt16 priorityPtr);

Description

An HP E1438A has two independent interrupt generators, each capable of interrupting on 
one of the seven VME interrupt lines when a status condition specified by a mask occurs.

age1438_interrupt_setup sets the interrupt mask, priority and which of the two 
interrupt generators on the HP E1438A is to be used. The remaining age1438_interrupt_ 
functions query the mask and priority individually.

Parameters

id is the VXI instrument session pointer returned by the age1438_init function.

intrNum is the number of the interrupt generator. The only values accepted are 0 and 1.

mask specifies the mask of events on which to interrupt. This mask is created by ORing 
together the bits defined in bits 8 through 15 of the status register. The mask parameter 
format is 0xMM00 where MM represents the maskable upper 8 bits. The lower 8 bits 
cannot be used for generating interrupts, and therefore must be set to zero in this function 
call.

priority specifies which of the seven VME interrupt lines to use. The only legal values are 0 
through 7. Specifying 0 turns the interrupt off, while 7 is the highest priority.

maskPtr  

priorityPtr

contain the current value of the interrupt mask and priority parameters.

Comments

The mask is cleared during the interrupt acknowledge cycle. Therefore, the command 
must be sent again or restored with “age1438_interrupt_restore” on page 98 in order to 
generate further interrupts.

Example

The program interrupt.exe described in the example programs provides an example of 
how to use interrupts correctly.
99



�� ��������������������������� �
Functions listed alphabetically
Return Value

AGE1438_SUCCESS indicates that a function was successful.

Values other than AGE1438_SUCCESS indicate an error condition or other important 
status condition. To determine the error message, pass the return value to “age1438_
error_message” on page 74.

See Also

“Default values” on page 152, “age1438_init” on page 87, “age1438_status_get” on 
page 129, “age1438_attrib_get” on page 53, “age1438_interrupt_restore” on page 98
100



�� ��������������������������� �
Functions listed alphabetically
age1438_lbus_mode

Sets the local bus transmission mode. This description also includes the query:

age1438_lbus_mode_get gets the current local bus mode.

VXIplug&play Syntax

#include "age1438".h

ViStatus age1438_lbus_mode(ViSession id, ViInt16 lbusMode);

ViStatus age1438_lbus_mode_get(ViSession id, ViPInt16 lbusModePtr);

Description

age1438_lbus_mode sets the local bus to either generate, append, insert or pipeline 
data. The data port must be set to the local bus with the age1438_data_port function 
(See “age1438_data_setup” on page 66) before these modes take effect.

Parameters

id is the VXI instrument session pointer returned by the age1438_init function.

lbusMode selects the transmission mode of the local bus when it is enabled by the age1438_data_

port function. 

AGE1438_GENERATE forces the module at id to generate data only, not passing through 
data from other modules on the local bus.

AGE1438_APPEND causes the HP E1438A to pass data through from modules on its left 
and append its data to the end.

AGE1438_INSERT causes the HP E1438A to place its data on the local bus and then pass 
data through from modules on its left.

AGE1438_PIPELINE causes the HP E1438A to pipe data through from modules on its left 
without appending or inserting its own data. The state of this parameter is unaffected by 
switching back and forth between the local bus and the VME backplane with the 
age1438_data_port function.

lbusModePtr points to the current value of the lbusMode parameter.

Return Value

8����
����?�������#�$%&8����
1	2����,
��

�!�#,!D#

!D�#?' ���#D<

A#D#?�'#
101



�� ��������������������������� �
Functions listed alphabetically
AGE1438_SUCCESS indicates that a function was successful.

Values other than AGE1438_SUCCESS indicate an error condition or other important 
status condition. To determine the error message, pass the return value to “age1438_
error_message” on page 74.

See Also

“Default values” on page 152, “age1438_init” on page 87, “age1438_data_setup” on page 66
102



�� ��������������������������� �
Functions listed alphabetically
age1438_lbus_reset

Resets the local bus. This description also includes the query:

age1438_lbus_reset_get gets the current local bus reset state

VXIplug&play Syntax

#include "age1438".h

ViStatus age1438_lbus_reset(ViSession id, ViInt16 lbusReset);

ViStatus age1438_lbus_reset_get(ViSession id, ViPInt16 lbusResetPtr);

Description

In order to avoid glitches in the local bus data, the local bus interface has strict 
requirements as to the order in which modules in a VXI mainframe have their local bus 
interface reset. Upon power-up or whenever any single module in the mainframe is put 
into a reset state, all modules should be placed into the reset state from left to right. Then 
all modules can be take out of reset from left to right. 

Parameters

id is the VXI instrument session pointer returned by the age1438_init function.

lbusReset puts the HP E1438A’s local bus into reset or takes it out of reset.

AGE1438_LBUS_RESET_ON puts the HP E1438A’s local bus into reset while AGE1438_
LBUS_RESET_OFF takes the HP E1438A out of reset.

lbusResetPtr points to the current value of the lbusReset parameter.

Example

When HP E1438As are used with the E1485 measurement controller, the E1485 must be 
reset while all of the HP E1438As are being held in reset to avoid initial glitches in the 
local bus data. The HP E1438As should be taken out of reset only after the first age1438_

meas_control release is issued. The correct way to reset the local bus is as follows:

lbus_control(LBUS_CTL_RESET, 0);  /* reset the E1485 lbus */

for all id{

age1438_lbus_reset(id, AGE1438_ON);  /* hold HP E1438As in reset */

}

/*Set LBUS mode for all modules */

for all id{

age1438_meas_control(id, AGE1438_RELEASE, AGE1438_ASSERT);

/* first arming */

age1438_lbus_reset(id, AGE1438_OFF);

/* remove reset from HP E1438As, has no effect after first time */

}

lbus_control(LBUS_CTL_RESET, 1);  /* unreset the E1485 lbus */

Return Value

AGE1438_SUCCESS indicates that a function was successful.
103



�� ��������������������������� �
Functions listed alphabetically
Values other than AGE1438_SUCCESS indicate an error condition or other important 
status condition. To determine the error message, pass the return value to “age1438_
error_message” on page 74.

See Also

“Default values” on page 152, “age1438_init” on page 87
104



�� ��������������������������� �
Functions listed alphabetically
age1438_meas_control

Initiates and controls measurements in multi-module systems.

VXIplug&play Syntax

#include "age1438".h

ViStatus age1438_meas_control(ViSession id, ViInt16 idle, ViInt16 sync);

Description

age1438_meas_control explicitly controls the measurement state.

Parameters

id is the VXI instrument session pointer returned by the age1438_init function.

idle selects the condition of the Idle state.

AGE1438_ASSERT holds the module in the Idle state.

AGE1438_RELEASE reverses a previous AGE1438_ASSERT or ensures that no forced 
Idle is active. 

sync age1438_meas_control also changes the state of the Sync signal, which is used to arm 
or trigger an HP E1438A module. In systems containing multiple HP E1438A modules the 
Sync signal is used to arm or trigger all modules simultaneously, and also to synchronize 
decimation counters and local oscillators among the HP E1438A modules.

selects the state of the sync signal.

AGE1438_ASSERT causes the module to assert the Sync signal.

AGE1438_RELEASE causes the module to release the Sync signal. When parameters of 
the age1438_clock_setup function which enable sync output are selected the module 
shares the sync signal with other HP E1438A modules. If any one of these modules asserts 
this shared Sync signal it then becomes asserted for all of them. All modules must release 
it before the shared Sync signal is released. Asserting then releasing the Sync line is used 
to start a measurement, load local oscillator values, or take a digital filter out of reset. 
These situations require a Sync line transition but do not require that the Sync line be held 
in a asserted state.

Note When the Sync line is asserted, it remains asserted for an adequate number of 

ADC clock cycles to ensure that the signal effect propagates to all the modules in 

the system. You can determine when the command is completed by looking as the 

Sync/Idle Complete bit in the Status Register.

Comments

See “The measurement loop” in chapter 3 for details on how a measurement progresses 
through the four states.

This function performs the following sequence:

1. Waits for both the AGE1438_STATUS_HARDWARE_SET and AGE1438_

STATUS_SYNC_COMPLETE bits to be set.
105



�� ��������������������������� �
Functions listed alphabetically
2. Returns AGE1438_STATUS_WAIT_TIMEOUT if more than three seconds 

elapses in step 1.

3. Returns AGE1438_SETUP_ERROR if AGE1438_STATUS_SETUP_ERROR was 

detected in step 1.

4. Writes data to the control register as prescribed by arguments to the 

function.

5. Clears the overload count maintained by the API. See “Comments on 

Overload” on page 113

6. Waits for AGE1438_STATUS_SYNC_COMPLETE.

7. Returns AGE1438_SYNC_NOT_COMPLETE if more than three seconds elapse 

in step 6, otherwise it returns AGE1438_SUCCESS.

Special conditions prevail during the Measure state. If programmed for block mode 
operation in the Measure state, the module asserts the Sync signal (regardless of the 
age1438_meas_control sync parameter setting) until a complete block of data has been 
collected and is available to the I/O port. When the shared Sync signal is released, 
indicating that all block mode data collection is finished, all block mode modules move 
synchronously to the idle state. In continuous mode the module releases the Sync signal 
immediately after moving into the measure state. This allows the age1438_meas_

control function to manipulate the Sync signal to cause synchronous changes to LO 
frequency while a continuous measurement is in progress. In continuous mode a module 
moves to the idle state only if explicitly programmed to do so or whenever the FIFO data 
buffer overflows.

In addition to controlling the progression through the four module states, the Sync signal 
is used to allow for synchronizing the decimation counters and local oscillators of 
multiple HP E1438A modules and synchronizing the fs/10 clock during external sampling. 
This is done by calling age1438_filter_sync and/or age1438_frequency_sync prior to 
asserting Sync with age1438_meas_control. This is normally done with the module in 
the Idle state; however, the center frequency can also be changed in the Measure state 
with age1438_frequency_sync if the modules are all programmed for continuous (non-
block mode) data collection.

If all modules in a multi-module system are in the Idle state when the age1438_meas_

control sync parameter is asserted, the LO frequency is updated and the next 
measurement is armed. If all modules are in the measurement state in continuous mode, 
the LO frequency is synchronously updated, and the measurement continues. In 
continuous mode you should ensure that all modules are in the same state, either the Idle 
state or the Measure state, before using age1438_meas_control to assert Sync. 
Otherwise some modules re-arm while others continue the current measurement. In 
block mode the sync assertion is ignored unless all modules are in the Idle state.

The age1438_meas_control function assures that a single module is in a valid state by 
checking that the hardware complete and sync valid bits in the status register are both 
true. In synchronous multi-module systems you should use the age1438_wait function 
for each module to assure a valid state in non-master modules within a synchronous 
group.
106



�� ��������������������������� �
Functions listed alphabetically
In the case of systems made up of multiple mainframes you must be aware that only 
modules in the mainframe containing the master module, as defined by age1438_clock_

setup, may assert sync. Any sync asserted in other mainframes is ignored by modules in 
all mainframes. This is true only for rear panel sync. Front panel sync is not sensitive to 
master mainframe designation.

Example

The program multichan.exe described in the example programs provides an example of 
how to correctly set up a multi-module measurement using age1438_meas_control to 
initiate state transitions.

Return Value

AGE1438_SUCCESS indicates that a function was successful.

Values other than AGE1438_SUCCESS indicate an error condition or other important 
status condition. To determine the error message, pass the return value to “age1438_
error_message” on page 74.

See Also

“Commands which halt active measurements” on page 149, “Default values” on page 152, 
“age1438_init” on page 87, “age1438_status_get” on page 129, “age1438_data_setup” on 
page 66, “age1438_filter_sync” on page 79, “age1438_frequency_setup” on page 83, 
“age1438_clock_setup” on page 57, “age1438_wait” on page 144, “age1438_read” on 
page 112, “Managing multiple modules” in chapter 3, “The measurement loop” in chapter 3
107



�� ��������������������������� �
Functions listed alphabetically
age1438_meas_init

Initiates a measurement without first checking for valid hardware setup.

VXIplug&play Syntax

#include "age1438".h

ViStatus age1438_meas_init(ViSession id);

Description

age1438_meas_init provides an easy way to initiate a measurement in a single module. 

Note This command is slightly faster and slightly less robust than age1438_meas_

start.

Parameters

id is the VXI instrument session pointer returned by the age1438_init function.

Comments

See “The measurement loop” in chapter 3 for details on how a measurement progresses 
through the four states.

This function performs the following sequence:

1. Clears the overload count maintained by the API. See “Comments on 

Overload” on page 113

2. Moves the module to Idle state.

3. Generates a Sync transition which moves the module to the Arm state.

4. Always returns AGE1438_SUCCESS (no error conditions can be detected by 

this function).

Return Value

This function always returns AGE1438_SUCCESS and does not return any error 
conditions.

See Also

“Commands which halt active measurements” on page 149, “age1438_init” on page 87, 
“age1438_meas_start” on page 109, “age1438_meas_control” on page 105, “age1438_
status_get” on page 129
108



�� ��������������������������� �
Functions listed alphabetically
age1438_meas_start

Checks for valid hardware setup and then initiates a measurement. 

VXIplug&play Syntax

#include "age1438".h

ViStatus age1438_meas_start(ViSession id);

Description

age1438_meas_start provides an easy way to initiate a measurement in a single module 
system. This command waits for a valid hardware setup, then, if the instrument is in a 
valid state, performs the equivalent of age1438_meas_init. 

Parameters

id is the VXI instrument session pointer returned by the age1438_init function.

Comments

See “The measurement loop” in chapter 3 for details on how a measurement progresses 
through the four states.

This function performs the following sequence:

1. Waits for AGE1438_STATUS_HARDWARE_SET bit to be set.

2. Returns AGE1438_START_ERROR if more than three seconds elapses in step 

1.

3. Returns AGE1438_SETUP_ERROR if AGE1438_STATUS_SETUP_ERROR was 

detected in step 1.

4. Performs age1438_meas_init and returns AGE1438_SUCCESS.

Example

The program acvolts.exe described in the example programs provides an example of how 
to initiate a very simple measurement using age1438_meas_start.

Return Value

AGE1438_SUCCESS indicates that a function was successful.

Values other than AGE1438_SUCCESS indicate an error condition or other important 
status condition. To determine the error message, pass the return value to “age1438_
error_message” on page 74.

See Also

“Commands which halt active measurements” on page 149, “age1438_meas_control” on 
page 105, “age1438_meas_init” on page 108, “age1438_status_get” on page 129, “age1438_
read” on page 112, “The measurement loop” in chapter 3
109



�� ��������������������������� �
Functions listed alphabetically
age1438_options_get

Identifies module options. 

VXIplug&play Syntax

#include "age1438".h

ViStatus age1438_options_get(ViSession id, ViChar options[]);

Description

Returns a list of options separated by commas.

Parameters

id is the VXI instrument session pointer returned by the age1438_init function.

options returns a string of up to 256 characters. For example "144" indicates option 144 (memory) 
is installed.

Note For this parameter you must allocate a character array of at least 256 characters 

AGE1438_STR_LEN_MIN, including the null byte, prior to calling this function in 

any programming language.

Return Value

AGE1438_SUCCESS indicates that a function was successful.

Values other than AGE1438_SUCCESS indicate an error condition or other important 
status condition. To determine the error message, pass the return value to “age1438_
error_message” on page 74.

See Also

“age1438_init” on page 87 
110



�� ��������������������������� �
Functions listed alphabetically
age1438_product_id_get

Gets the module’s product identification string.

VXIplug&play Syntax

#include "age1438".h

ViStatus age1438_product_id_get(ViSession id, ViChar productId[]);

Description

Parameters

id is the VXI instrument session pointer returned by the age1438_init function.

productId returns the module ID such as "HP E1438A".

Note For this parameter you must allocate a character array of at least 256 characters 

AGE1438_STR_LEN_MIN, including the null byte, prior to calling this function in 

any programming language.

Return Value

AGE1438_SUCCESS indicates that a function was successful.

Values other than AGE1438_SUCCESS indicate an error condition or other important 
status condition. To determine the error message, pass the return value to “age1438_
error_message” on page 74.

See Also

“age1438_init” on page 87 
111



�� ��������������������������� �
Functions listed alphabetically
age1438_read

Reads scaled 32-bit float data from the VME backplane register. This description also 
includes the following function:

age1438_read64 reads scaled 64-bit float data, implemented specifically for VEE 
applications.

VXIplug&play Syntax

#include "age1438".h

ViStatus age1438_read(ViSession id, ViReal32 data[], ViInt32 sampleCount, 

ViPInt16 overloadPtr);

ViStatus age1438_read64(ViSession id, ViReal64 data[], ViInt32 sampleCount, 

ViPInt16 overloadPtr);

Description

age1438_read returns a block of floating point data from the HP E1438A that has been 
scaled to be in volts. The function waits for a block of data to be ready before attempting 
to read the block.

These functions can only read data from the VME backplane register. The data port of the 
HP E1438A must be set to AGE1438_VME by the age1438_data_port function for these 
functions to be effective.

This function performs the following sequence:

1. Checks for AGE1438_STATUS_READ_BLOCK and AGE1438_STATUS_

OVERLOAD.

2. If there is an overload then the overload count maintained by the API is 

incremented.

3. If a block of data is NOT ready:

a. the function immediately returns the current measurement state and

b. the value of the overload argument is set to AGE1438_OFF.

4. If a block of date IS ready:

a. data is read from the module,

b. converted to a floating point number and scaled,

c. the function returns any errors that were encountered when reading the 

data,

d. the value of the overload argument is set to AGE1438_ON, and

e. the overload count maintained by the API is set to zero.

Parameters

id is the VXI instrument session pointer returned by the age1438_init function.
112



�� ��������������������������� �
Functions listed alphabetically
data is a pointer to the array into which the floating point data is to be placed. Be sure to 
allocate sufficient storage space at this location to hold the full data record as determined 
by the sampleCount parameter. Note that when the module is set to complex data type, 
the output data record contains 2 × sampleCount floating point values. For real data the 
record contains sampleCount floating point values.

sampleCount for age1438_read sampleCount is the number real or complex data values to read. Real 
data is one 32-bit floating point value. Complex data is made up of two 32-bit floating 
point values comprising the real and imaginary values.

for age1438_read64 sampleCount is the number real or complex data values to read. 
Real data is one 64-bit floating point value. Complex data is made up of two 64-bit floating 
point values comprising the real and imaginary values.

This should never be set larger than the blocksize parameter set in the age1438_data_

blocksize function. In continuous data collection mode, sampleCount should be set 
equal to blocksize to ensure that the entire data block is read out.

overloadPtr returns an overload indicator. The way to properly use the overload argument for the 
age1438_read or age1438_read64 function is this:

�� �
������
��������
�
"� +�������� !"#���#�����
%� +�������� !"#���
�������� !"#���
$ �
�����������	
�����������������������	���
	������	�������������������
	��
�������
��
��	�������	�����
������	������
����
����	������
	����������� !""#

AGE1438_NO_DATA_MEASUREMENT_IN_PROGRESS 

AGE1438_NO_DATA_MEASUREMENT_PAUSED

AGE1438_NO_DATA_WAITING_FOR_TRIGGER

AGE1438_NO_DATA_WAITING_FOR_ARM

$��	�������������������������� %&''�%%���������	����	������
����
������������������
���������	�
����
��������	�
�	�������
����������	�������
�()

$� !�����������	����
/�	�)	
3�
��������)���-	�����)
��
���)������������
���� !"#���
	������� !"#���
$ ����������������1���� !"#���#�����
	����������)
�����
�������2�

6� ��
���	
��������	����/�����*
������������������	���*
������
��������
*
���
�����)���-��
������)���-����
��!�����������	����
���
��*
����������������
������
��	���
�
���	�����*
������	��
���
����
�������������� !"#���#
�����

Comments on Overload

Since reading the status register clears the overload bit, overloads are tracked at the API 
level.

In block mode, you receive the overload indication on a block-by block basis by calling 
age1438_meas_start and age1438_read in sequence.

In continuous mode, depending on the effective sample rate of the instrument and how 
often data is read, an overload indication returned by age1438_read may or may not 
correspond to the data returned. The overload indication only means that an overload has 
occurred since the most recent call to age1438_meas_init, age1438_meas_init, or 
113



�� ��������������������������� �
Functions listed alphabetically
age1438_read, whichever was issued last. You should be aware that it is likely that the 
reported overload occurred in data which has been acquired in the module, is waiting in 
the FIFO, but has not yet been read. 

Return Value

AGE1438_SUCCESS

AGE1438_NO_DATA_MEASUREMENT_IN_PROGRESS

AGE1438_NO_DATA_MEASUREMENT_PAUSED

AGE1438_NO_DATA_WAITING_FOR_TRIGGER

AGE1438_NO_DATA_WAITING_FOR_ARM

See Also

“age1438_init” on page 87, “age1438_data_setup” on page 66, “age1438_meas_start” on 
page 109, “age1438_meas_init” on page 108, “age1438_meas_control” on page 105, 
“age1438_status_get” on page 129, “The measurement loop” in chapter 3
114



�� ��������������������������� �
Functions listed alphabetically
age1438_read_raw

Reads raw, unscaled data from the VME backplane register.

VXIplug&play Syntax

#include "age1438".h

ViStatus age1438_read_raw(ViSession id, ViPInt16 data[], ViInt32 wordCount, 

ViPInt16 overloadPtr);

Description

age1438_read_raw returns a block of raw, unscaled integer data from the FIFO.

This function can only read data from the VME backplane register. The data port of the 
HP E1438A must be set to AGE1438_VME by the age1438_data_port function for this 
function to be effective.

This function performs the following sequence:

1. Checks for AGE1438_STATUS_READ_BLOCK and AGE1438_STATUS_

OVERLOAD.

2. If there is an overload then the overload count maintained by the API is 

incremented.

3. If a block of data is NOT ready:

a. the function immediately returns the current measurement state and

b. the value of the overload argument is set to AGE1438_OFF.

4. If a block of date IS ready:

a. data is read from the module,

b. the function returns any errors that were encountered when reading the 

data,

c. the value of the overload argument is set to AGE1438_ON, and

d. the overload count maintained by the API is set to zero.

Parameters

id is the VXI instrument session pointer returned by the age1438_init function.

data is a pointer to the array into which the raw data record is to be placed. Be sure to allocate 
sufficient storage space to hold the full data record as determined by the wordCount 
parameter.

wordCount wordCount is the total number of data values to read into the data array from the 
HP E1438A output FIFO. The maximum wordCount depends on the blocksize, data type, 
and data resolution parameter settings.
115



�� ��������������������������� �
Functions listed alphabetically
In continuous data collection mode, wordCount should be set equal to the maximum 
possible wordCount to ensure that the entire data block is read out.

overloadPtr returns an overload indicator. See “Comments on Overload” on page 113. The way to 
properly use the overload argument for the age1438_read_raw function is this:

�� �
������
��������
�
"� +�������� !"#���#�����
%� +�������� !"#���
#��%�
�����������	
�����������������������	���
	������	�������������������
	��
�������
��
��	�������	�����
������	������
����
����	������
	����������� !""#

AGE1438_NO_DATA_MEASUREMENT_IN_PROGRESS 

AGE1438_NO_DATA_MEASUREMENT_PAUSED

AGE1438_NO_DATA_WAITING_FOR_TRIGGER

AGE1438_NO_DATA_WAITING_FOR_ARM

$��	�������������������������� %&''�%%���������	����	������
����
������������������
���������	�
����
��������	�
�	�������
����������	�������
�()

$� !�����������	����
/�	�)	
3�
��������)���-	�����)
��
���)������������
�
���� !"#���
#��%����������������1���� !"#���#�����	����������)
�
����
�������2�

6� ��
���	
��������	����/�����*
������������������	���*
������
��������
*
���
�����)���-��
������)���-����
��!�����������	����
���
��*
����������������
������
��	���
�
���	�����*
������	��
���
����
�������������� !"#���#
�����

Note The primary purpose of the age1438_read_raw function is to provide the fastest 

possible way to read blocks of data from the module. Since this command does 

not perform data scaling after reading data it may save 10-20% of the overall 

age1438_read time, depending on the host computer in use. The resulting data 

ordering is dependent on the data type and resolution. The array may be cast as 

a long before reading the data to provide whole words.

Example

A declaration in the Front Panel example program can be changed to exercise age1438_
read_raw() in frmMain of e1438.vbp:

Const constFreqCentRaw = False  ’when TRUE, use age1438_read_raw()

’instead of age1438_read

Return Value

Data type
Resolution

(bits)
Words per sample

REAL 12 2

REAL 24 4

COMPLEX 12 4

COMPLEX 24 8
116



�� ��������������������������� �
Functions listed alphabetically
AGE1438_SUCCESS

AGE1438_NO_DATA_MEASUREMENT_IN_PROGRESS

AGE1438_NO_DATA_MEASUREMENT_PAUSED

AGE1438_NO_DATA_WAITING_FOR_TRIGGER

AGE1438_NO_DATA_WAITING_FOR_ARM

See Also

“age1438_init” on page 87, “age1438_read” on page 112, “age1438_status_get” on page 129, 
“age1438_data_setup” on page 66, “The measurement loop” in chapter 3
117



�� ��������������������������� �
Functions listed alphabetically
age1438_reference_clock

Selects the source of the reference clock. This description also includes the query 
function:

age1438_reference_clock_get

VXIplug&play Syntax

#include "age1438".h

ViStatus age1438_reference_clock(ViSession id, ViInt16 refClock);

ViStatus age1438_reference_clock_get(ViSession id, ViPInt16 refClockPtr);

Note This command should be used only for specialized custom clock requirements. 

Most useful clock setups can be supplied by age1438_clock_setup.

Parameters

id is the VXI instrument session pointer returned by the age1438_init function.

refClock AGE1438_FRONT_PANEL_CLOCK specifies the front panel clock be uses as the 
reference clock.

AGE1438_VXI_CLOCK specifies that the VXI (rear panel) clock be used as the reference 
clock.

refClockPtr Returns a pointer to the current value of refClock.

Return Value

AGE1438_SUCCESS indicates that a function was successful.

Values other than AGE1438_SUCCESS indicate an error condition or other important 
status condition. To determine the error message, pass the return value to “age1438_
error_message” on page 74.

See Also

“Default values” on page 152, “age1438_init” on page 87, “age1438_clock_setup” on 
page 57, “age1438_vxi_clock_output” on page 143, “age1438_front_panel_clock_input” on 
page 86, “Using clock and sync” in chapter 3
118



�� ��������������������������� �
Functions listed alphabetically
age1438_reference_prescaler

Selects prescaling of the reference clock. This description also includes the query 
function:

age1438_reference_prescaler_get

VXIplug&play Syntax

#include "age1438".h

ViStatus age1438_reference_prescaler(ViSession id, ViInt16 refPrescaler);

ViStatus age1438_reference_prescaler_get(ViSession id, ViPInt16 

refPrescalerPtr);

Note This command should be used only for specialized custom clock requirements. 

Most useful clock setups can be supplied by age1438_clock_setup.

Description

This function should generally be left in the default mode. The alternate mode applies to a 
different model of the module.

Parameters

id is the VXI instrument session pointer returned by the age1438_init function.

refPrescaler AGE1438_PRESCALE_BY_1 divides the reference clock by one.

AGE1438_PRESCALE_BY_4 divides the reference clock by four.

refPrescalerPtr Returns a pointer to the current value of refPrescalerPtr.

Return Value

AGE1438_SUCCESS indicates that a function was successful.

Values other than AGE1438_SUCCESS indicate an error condition or other important 
status condition. To determine the error message, pass the return value to “age1438_
error_message” on page 74.

See Also

“Default values” on page 152, “age1438_init” on page 87, “age1438_clock_setup” on 
page 57, “age1438_front_panel_clock_input” on page 86, “age1438_vxi_clock_output” on 
page 143, “Using clock and sync” in chapter 3
119



�� ��������������������������� �
Functions listed alphabetically
age1438_reset

Places the module in a known state. 

VXIplug&play Syntax

#include "age1438".h

ViStatus age1438_reset(ViSession id);

Description

age1438_reset returns the module’s internal data structures to the power-up state but 
does not reset the hardware. This function can be called separately by this function, or 
may be selected in conjunction with the age1438_init function.

Parameters

id is the VXI instrument session pointer returned by the age1438_init function.

Comments

The reset values are listed in “Default values” on page 152.

This command takes about 100 ms to complete.

Return Value

AGE1438_SUCCESS indicates that a function was successful.

Values other than AGE1438_SUCCESS indicate an error condition or other important 
status condition. To determine the error message, pass the return value to “age1438_
error_message” on page 74.

See Also

“Commands which halt active measurements” on page 149, “age1438_init” on page 87, 
“age1438_reset_hard” on page 121
120



�� ��������������������������� �
Functions listed alphabetically
age1438_reset_hard

Resets the module to the power-up state. 

VXIplug&play Syntax

#include "age1438".h

ViStatus age1438_reset_hard(ViSession id);

Description

age1438_reset_hard resets the module’s firmware and hardware including the 
processor.

Parameters

id is the VXI instrument session pointer returned by the age1438_init function.

Comments

The reset values are listed in “Default values” on page 152. In addition, the hardware 
registers, including the save register, are reset to the power-up state.

This command takes about 5 seconds to complete.

Return Value

AGE1438_SUCCESS indicates that a function was successful.

Values other than AGE1438_SUCCESS indicate an error condition or other important 
status condition. To determine the error message, pass the return value to “age1438_
error_message” on page 74.

See Also

“Commands which halt active measurements” on page 149, “age1438_init” on page 87, 
“age1438_reset” on page 120
121



�� ��������������������������� �
Functions listed alphabetically
age1438_revision_query

Returns strings that identify the date of the firmware revision. 

VXIplug&play Syntax

#include "age1438".h

ViStatus age1438_revision_query(ViSession id, ViChar driverRev[], ViChar 

instrRev[]);

Parameters

id is the VXI instrument session pointer returned by the age1438_init function.

driverRev returns the date and time of the module’s driver revision in the form:

a.dd.dd OPERS Ddd Mmm Date hh:mm:ss YYYY where Ddd is the abbreviated 
day of the week and Date is an integer from 1 to 31

instRev returns the date, time, and board number of the module’s firmware revision in the form:

mm-dd-yyyy hh:mm 01Bd: xxxx; 02Bd:xxxx where xxxx is a manufacturer’s 
date code used for service purposes.

Note For this parameter you must allocate a character array of at least 256 characters 

AGE1438_STR_LEN_MIN, including the null byte, prior to calling this function in 

any programming language.

Return Value

AGE1438_SUCCESS indicates that a function was successful.

Values other than AGE1438_SUCCESS indicate an error condition or other important 
status condition. To determine the error message, pass the return value to “age1438_
error_message” on page 74.

See Also

“age1438_init” on page 87
122



�� ��������������������������� �
Functions listed alphabetically
age1438_self_test

Performs a self-test and returns the result of that self test. 

VXIplug&play Syntax

#include "age1438".h

ViStatus age1438_self_test(ViSession id, ViPInt16 testResult, ViChar 

testMessage[]);

Description

The HP E1438A self test includes the following tests:

• Digital: verifies the integrity of paths from LO chip through the filters to the memory 
controller.

• Serial: verifies the integrity of serial setup path for each board.

• Memory: fills the entire DRAM then verifies that all the data is correct.

• Analog: verifies that auto zero adjust is working and that the input is triggering.

• Clock: verifies that 100 MHz and 102.4 MHz oscillators are working properly.

Parameters

id is the VXI instrument session pointer returned by the age1438_init function.

testMessage points to the self test status message string up to 256 characters long.

Note For this parameter you must allocate a character array of at least 256 characters 

AGE1438_STR_LEN_MIN, including the null byte, prior to calling this function in 

any programming language.

testResult points to the instrument numeric error code.

Possible test result values are:

Error
Message

Error Code
(hex)

Self Test
Status Message

AGE1438_ST_SUCCESS 0x000 self test successful

AGE1438_ST_HARDWARE_FAIL 0x001 hardware failure

AGE1438_ST_SERIAL1_FAIL 0x002 serial 1 test failed

AGE1438_ST_SERIAL2_FAIL 0x004 serial 2 test failed

AGE1438_ST_CLOCK1_FAIL 0X008 100 MHz clock test failed

AGE1438_ST_CLOCK2_FAIL 0x010 102.4 MHz clock test failed

AGE1438_ST_MEMORY_FAIL 0x020 memory test failed

AGE1438_ST_DIGITAL1_FAIL 0x040 real data path failed
123



�� ��������������������������� �
Functions listed alphabetically
Note The required completion time for self-test is up to 25 seconds depending on the 

amount of memory in the module.

Return Value

AGE1438_SUCCESS indicates that a function was successful.

Values other than AGE1438_SUCCESS indicate an error condition or other important 
status condition. To determine the error message, pass the return value to “age1438_
error_message” on page 74.

See Also

“Commands which halt active measurements” on page 149, “age1438_init” on page 87

AGE1438_ST_DIGITAL2_FAIL 0x080 complex data path failed

AGE1438_ST_ANALOG_FAIL 0x100 analog test failed

AGE1438_ST_EXECUTION_ERR 0x400 self-test execution error

Error
Message

Error Code
(hex)

Self Test
Status Message
124



�� ��������������������������� �
Functions listed alphabetically
age1438_serial_number

Sets the serial number of the module. This description also includes the query function:

age1438_serial_number_get

VXIplug&play Syntax

#include "age1438".h

ViStatus age1438_serial_number(ViSession id, ViChar serialNum[]);

ViStatus age1438_serial_number_get(ViSession id, ViChar serialNum[]);

Caution This command is to be used for repair purposes only.

Description

This command is used to reassign a serial number after a module has been serviced.

Parameters

id is the VXI instrument session pointer returned by the age1438_init function.

serialNum sends or gets a serial number of less than 16 characters

Note For this parameter you must allocate a character array of at least 256 characters 

AGE1438_STR_LEN_MIN, including the null byte, prior to calling this function in 

any programming language.

Return Value

AGE1438_SUCCESS indicates that a function was successful.

Values other than AGE1438_SUCCESS indicate an error condition or other important 
status condition. To determine the error message, pass the return value to “age1438_
error_message” on page 74.

See Also

“age1438_init” on page 87 
125



�� ��������������������������� �
Functions listed alphabetically
age1438_smb_clock_output

Specifies which clock to output from the SMB clock connectors. This description also 
includes the query function:

age1438_smb_clock_output_get

VXIplug&play Syntax

#include "age1438".h

ViStatus age1438_smb_clock_output(ViSession id, ViInt16 smbClock);

ViStatus age1438_smb_clock_output_get(ViSession id, ViPInt16 smbclockPtr);

Note This command should be used only for specialized custom clock requirements. 

Most useful clock setups can be supplied by age1438_clock_setup.

Description

This function selects the source of the output for the front panel SMB clock connectors.

Parameters

id is the VXI instrument session pointer returned by the age1438_init function.

smbClock AGE1438_CLOCK_OFF specifies no output from the SMB clock connectors.

AGE1438_DIVIDED_ADC_CLOCK specifies that the divided ADC clock be output from 
the SMB clock connectors.

AGE1438_BNC_CLOCK specifies that the BNC input be output from the SMB clock 
connectors.

AGE1438_VXI_CLOCK specifies the VXI clock be output from the SMB clock connectors.

smbClockPtr Returns a pointer to the current value of smbClock.

Return Value

AGE1438_SUCCESS indicates that a function was successful.

Values other than AGE1438_SUCCESS indicate an error condition or other important 
status condition. To determine the error message, pass the return value to “age1438_
error_message” on page 74.

See Also

“Default values” on page 152, “age1438_init” on page 87, “age1438_clock_setup” on 
page 57, “age1438_front_panel_clock_input” on page 86, “Using clock and sync” in 
chapter 3
126



�� ��������������������������� �
Functions listed alphabetically
age1438_state_recall

Recalls a module’s previous instrument state.

age1438_state_recall

VXIplug&play Syntax

#include "age1438".h

ViStatus age1438_state_recall(ViSession id);

Description

This function aborts any active measurement and recalls the instrument state previously 
saved by age1438_state_save. This function requires >100 ms to complete.

Parameters

id is the VXI instrument session pointer returned by the age1438_init function.

Return Value

AGE1438_SUCCESS indicates that a function was successful.

Values other than AGE1438_SUCCESS indicate an error condition or other important 
status condition. To determine the error message, pass the return value to “age1438_
error_message” on page 74.

See Also

“Commands which halt active measurements” on page 149, “age1438_init” on page 87, 
“age1438_state_save” on page 128
127



�� ��������������������������� �
Functions listed alphabetically
age1438_state_save

Saves the module’s current instrument state.

age1438_state_save

VXIplug&play Syntax

#include "age1438".h

ViStatus age1438_state_save(ViSession id);

Description

This function may be used to save a state to which you want to return later. age1438_reset 
does not change a saved state. The state is not saved to non-volatile RAM.

Note The saved state is lost by issuing the following commands: age1438_input_range_

auto, age1438_input_autozero, age1438_self_test, and age1438_reset_hard.

Parameters

id is the VXI instrument session pointer returned by the age1438_init function.

Return Value

AGE1438_SUCCESS indicates that a function was successful.

Values other than AGE1438_SUCCESS indicate an error condition or other important 
status condition. To determine the error message, pass the return value to “age1438_
error_message” on page 74.

See Also

“age1438_init” on page 87, “age1438_state_recall” on page 127
128



�� ��������������������������� �
Functions listed alphabetically
age1438_status_get

Reads status register information for the module. 

VXIplug&play Syntax

#include "age1438".h

ViStatus age1438_status_get(ViSession id, ViPInt16 statusPtr);

Parameters

id is the VXI instrument session pointer returned by the age1438_init function.

statusPtr points to the status word. The bits are defined below:

Status Bit Definition Description

0-1 MEAS_STATUS These two bits indicate the current state of the 
measurement loop as shown in the table below. See 
“The measurement loop” in chapter 3 for 
more information about these states:
00 IDLE
01 ARM
10 MEASURE
11 TRIGGER

2 STATUS_PASSED Passed: This bit is always set to 1

3 STATUS_READY This bit is set when the module is ready after power-on. 
See the VXIbus Specifications for more information.

4 STATUS_UNUSED1 Reserved for future use

5 STATUS_UNUSED2 Reserved for future use

6 STATUS_SETUP_ERROR Setup error: An invalid parameter value was requested. If 
an invalid block size was requested, the closest valid block 
size is used until a change to an interrelated parameter 
makes the requested block size valid. If a data resolution, 
data type, filter bandwidth, trigger delay, or filter 
decimation parameter was requested which would result 
in an inability to make a measurement, the previous valid 
parameter is used until a change to an interrelated 
parameter makes the requested parameter valid

7 STATUS_SYNC_COMPLETE Sync/Idle Complete: This bit is set when the most recent 
user-initiated Sync or Idle change has propagated through 
to all modules in a system. The change is a result of 
asserting SYNC or forcing Idle via the Control Register or 
issuing a meas_control command or function

8 STATUS_READ_VALID This flag is set whenever there is at least one valid 16-bit 
data word available to be read via the VME data register. 
Not valid when using the local bus data port.
129



�� ��������������������������� �
Functions listed alphabetically
Return Value

AGE1438_SUCCESS indicates that a function was successful.

Values other than AGE1438_SUCCESS indicate an error condition or other important 
status condition. To determine the error message, pass the return value to “age1438_
error_message” on page 74.

See Also

“age1438_init” on page 87

9 STATUS_BLOCK_READY This bit is set in continuous mode whenever the size of the 
data in the FIFO is equal to or greater than the block size 
register. Check this bit before reading data to insure that a 
block of data may be transferred without fear of running 
out of data, thereby holding up the Local bus or VME bus. 
This bit is set in block mode whenever the module has 
successfully taken a block size number of samples since 
the most recent trigger and is cleared when the block is 
read out, when force to Idle is asserted, or when the 
module is armed for another measurement.

10 STATUS_ARMED This bit is set whenever the module is in the Trigger state, 
or is in the Arm state and has satisfied its pre-trigger 
requirements. When this bit is set, the module releases the 
VXI Sync line. Once all modules release the Sync line, then 
all modules go to the Trigger state.

11 STATUS_FIFO_OVERFLOW FIFO Overflow: This bit set when the FIFO buffer 
overflows in continuous mode

12 STATUS_OVERLOAD This bit is set whenever the ADC converts a sample that 
exceeds the range of the ADC. The bit is cleared when the 
Status register is read.

13 STATUS_ERROR_QUEUE This bit is set whenever there is an error in the error 
queue. It is cleared when the error queue is empty

14 STATUS_MODID A (1) in this field indicates that the module is not selected 
via the P2 MODID line. A (0) indicates that the module is 
selected by a high state on the P2 MODID line

15 STATUS_HARDWARE_SET This bit is set when all commands are complete and the 
hardware has been set

Status Bit Definition Description
130



�� ��������������������������� �
Functions listed alphabetically
age1438_sync_clock

Selects the source of the sync clock. This description also includes the query function:

age1438_sync_clock_get

VXIplug&play Syntax

#include "age1438".h

ViStatus age1438_sync_clock(ViSession id, ViInt16 syncClock);

ViStatus age1438_sync_clock_get(ViSession id, ViPInt16 syncClockPtr);

Note This command should be used only for specialized custom clock requirements. 

Most useful clock setups can be supplied by age1438_clock_setup.

Parameters

id is the VXI instrument session pointer returned by the age1438_init function.

syncClock AGE1438_SMB_CLOCK specifies using the front panel clock on the SMB connectors as 
the sync clock.

AGE1438_VXI_CLOCK specifies using the VXI (rear panel) clock as the sync clock.

AGE1438_DIVIDED_ADC_CLOCK specifies using the divided ADC clock as the sync 
clock.

syncClockPtr Returns a pointer to the current value of syncClock.

Return Value

AGE1438_SUCCESS indicates that a function was successful.

Values other than AGE1438_SUCCESS indicate an error condition or other important 
status condition. To determine the error message, pass the return value to “age1438_
error_message” on page 74.

See Also

“Default values” on page 152, “age1438_init” on page 87, “age1438_clock_setup” on 
page 57, “age1438_sync_direction” on page 132, “age1438_sync_output” on page 133, 
“Using clock and sync” in chapter 3
131



�� ��������������������������� �
Functions listed alphabetically
age1438_sync_direction

Selects front or rear panel availability of the sync signal. This description also includes 
the query function:

age1438_sync_direction_get

VXIplug&play Syntax

#include "age1438".h

ViStatus age1438_sync_direction(ViSession id, ViInt16 syncDirection);

ViStatus age1438_sync_direction_get(ViSession id, ViPInt16 syncDirectionPtr);

Note This command should be used only for specialized custom clock requirements. 

Most useful clock setups can be supplied by age1438_clock_setup.

Description

This function determines whether the front or rear panel sync signal is available to the 
other panel.

Parameters

id is the VXI instrument session pointer returned by the age1438_init function.

syncDirection AGE1438_SYNC_FRNT_TO_REAR specifies that front panel sync signal be available on 
the VXI backplane (rear panel).

AGE1438_SYNC_REAR_TO_FRNT specifies that the VXI backplane sync signal be 
available on the front panel SMB sync connectors.

syncDirectionPtr Returns a pointer to the current value of syncDirection.

Return Value

AGE1438_SUCCESS indicates that a function was successful.

Values other than AGE1438_SUCCESS indicate an error condition or other important 
status condition. To determine the error message, pass the return value to “age1438_
error_message” on page 74.

See Also

“Default values” on page 152, “age1438_init” on page 87, “age1438_sync_output” on 
page 133, “age1438_sync_clock” on page 131, “Using clock and sync” in chapter 3
132



�� ��������������������������� �
Functions listed alphabetically
age1438_sync_output

Selects the output for the sync signal. This description also includes the query function:

age1438_sync_output_get

VXIplug&play Syntax

#include "age1438".h

ViStatus age1438_sync_output(ViSession id, ViInt16 syncOutput);

ViStatus age1438_sync_output_get(ViSession id, ViPInt16 syncOutputPtr);

Note This command should be used only for specialized custom clock requirements. 

Most useful clock setups can be supplied by age1438_clock_setup.

Description

This function selects which output the module should use for it’s sync signal.

Parameters

id is the VXI instrument session pointer returned by the age1438_init function.

syncOutput AGE1438_SYNC_OUT_OFF specifies no sync signal output.

AGE1438_SYNC_OUT_BOTH specifies that the sync signal be output to both the front 
panel SMB sync connectors and the VXI backplane.

AGE1438_SYNC_OUT_SMB specifies that the sync signal be output to the front panel 
SMB sync connectors.

AGE1438_SYNC_OUT_VXI specifies that the sync signal be output to the VXI backplane.

syncOutputPtr Returns a pointer to the current value of syncOutput.

Return Value

AGE1438_SUCCESS indicates that a function was successful.

Values other than AGE1438_SUCCESS indicate an error condition or other important 
status condition. To determine the error message, pass the return value to “age1438_
error_message” on page 74.

See Also

“Default values” on page 152, “age1438_init” on page 87, “age1438_clock_setup” on 
page 57, “age1438_sync_clock” on page 131, “Using clock and sync” in chapter 3
133



�� ��������������������������� �
Functions listed alphabetically
age1438_trigger_delay_actual_get

Returns the actual trigger delay from the most recent trigger event.

VXIplug&play Syntax

#include "age1438".h

ViStatus age1438_trigger_delay_actual_get(ViSession id, ViPInt32 

actualDelayPtr);

Description

 This delay value provides more accuracy than the trigger delay parameter alone since it 
includes a measurement of the fractional part of the output sample period between the 
actual trigger event and the next available output sample. The trigger delay accuracy 
improves the delay value to one ADC sample clock period rather than one output sample 
period. This can result in a substantial improvement in accuracy when narrow bandwidth 
decimation filtering is used.

age1438_trigger_delay_actual_get must be called for each new trigger event that 
requires precise delay measurement. The actual delay is still expressed in ADC sample 
periods.

In multiple module systems, the actual delay of the triggering module should be used to 
correct data from other modules in the system.

Parameters

id is the VXI instrument session pointer returned by the age1438_init function.

actualDelayPtr points to the returned actual delay from the most recent trigger event and the resulting 
first output sample time.

Return Value

AGE1438_SUCCESS indicates that a function was successful.

Values other than AGE1438_SUCCESS indicate an error condition or other important 
status condition. To determine the error message, pass the return value to “age1438_
error_message” on page 74.

See Also

“age1438_init” on page 87, “age1438_trigger_setup” on page 136, “age1438_trigger_phase_
actual_get” on page 135, “Delay and phase in triggered measurements” in chapter 3, 
“Trigger and phase in multi-module systems” in chapter 3
134



�� ��������������������������� �
Functions listed alphabetically
age1438_trigger_phase_actual_get

Returns a representation of the phase value of the LO at the most recent trigger point.

VXIplug&play Syntax

#include "age1438".h

ViStatus age1438_trigger_phase_actual_get(ViSession id, ViPInt16 

actualPhasePtr);

Parameters

id is the VXI instrument session pointer returned by the age1438_init function.

actualPhasePtr points to the returned value which is an integer from �32769 to 32767 and should be  
interpreted as follows:

$*(����B75,*B3+$6(B��UHSUHVHQWV���GHJUHHV��RU���

$*(����B75,*B3+$6(B���UHSUHVHQWV����GHJUHHV��RU�������

$*(����B75,*B3+$6(B����UHSUHVHQWV������GHJUHHV��RU��������
$*(����B75,*B3+$6(B����UHSUHVHQWV�������-����GHJUHHV��RU��������

This phase value is not corrected for the actual delay as returned by the age1438_trigger_
delay_actual_get command. If a more accurate value of the LO phase is desired, it should 
be corrected:

accurate LO phase = age1438_trigger_phase_actual_get - age1438_
trigger_delay_actual_get * age1438_frequency_center_get * 65536

The LO phase could be used in time domain averaging of blocks, or other operations 
involving zoomed blocks of data, so that the varying phase of the LO can be removed from 
the calculation.

Return Value

AGE1438_SUCCESS indicates that a function was successful.

Values other than AGE1438_SUCCESS indicate an error condition or other important 
status condition. To determine the error message, pass the return value to “age1438_
error_message” on page 74.

See Also

“age1438_init” on page 87, “age1438_trigger_setup” on page 136, “age1438_trigger_delay_
actual_get” on page 134, “age1438_frequency_setup” on page 83,  “Delay and phase in 
triggered measurements” in chapter 3, “Trigger and phase in multi-module systems” in 
chapter 3
135



�� ��������������������������� �
Functions listed alphabetically
age1438_trigger_setup

Sets all triggering parameters. This description also includes information on the following 
functions which set or query the trigger parameters individually: 

age1438_trigger_adclevel specifies the trigger threshold for an ADC trigger
age1438_trigger_adclevel_get gets the ADC trigger threshold
age1438_trigger_delay specifies a pre- or post-trigger delay time
age1438_trigger_delay_get gets the trigger delay time
age1438_trigger_gen determines whether a module can generate a trigger
age1438_trigger_gen_get gets the trigger generation status
age1438_trigger_maglevel specifies the trigger threshold for a magnitude trigger
age1438_trigger_maglevel_get gets magnitude trigger threshold
age1438_trigger_slope selects a positive or negative trigger
age1438_trigger_slope_get gets trigger slope
age1438_trigger_type determines the trigger type
age1438_trigger_type_get gets trigger type

VXIplug&play Syntax

#include "age1438".h

ViStatus age1438_trigger_setup(ViSession id, ViInt16 trigType, ViInt32 

trigDelay, ViInt16 adcLevel, ViInt16 magLevel, ViInt16 slope, ViInt16 genTrig);

ViStatus age1438_trigger_adclevel(ViSession id, ViInt16 adcLevel);

ViStatus age1438_trigger_adclevel_get(ViSession id, ViPInt16 adcLevelPtr);

ViStatus age1438_trigger_delay(ViSession id, ViInt32 trigDelay);

ViStatus age1438_trigger_delay_get(ViSession id, ViPint32 trigDelayPtr);

ViStatus age1438_trigger_gen(ViSession id, ViInt16 genTrig);

ViStatus age1438_trigger_gen_get(ViSession id, ViPInt16 genTrigPtr);

ViStatus age1438_trigger_maglevel(ViSession id, ViInt16 magLevel);

ViStatus age1438_trigger_maglevel_get(ViSession id, ViPInt16 magLevelPtr);

ViStatus age1438_trigger_slope(ViSession id, ViInt16 slope);

ViStatus age1438_trigger_slope_get(ViSession id, ViPInt16 slopePtr);

ViStatus age1438_trigger_type(ViSession id, ViInt16 trigType);

ViStatus age1438_trigger_type_get(ViSession id, ViPInt16 trigTypePtr);

Description

An HP E1438A can be triggered to collect data in a variety of ways. The trigger can be 
internally generated or can come from an external source. Multiple modules can be 
triggered synchronously. A variable pre- and post-trigger delay can be programmed for 
data collection. The slope and level of the trigger point on a signal can be selected. The 
source of the internal trigger can be either the output of the ADC or the magnitude of the 
complex output of the decimation filter. 

age1438_trigger_setup is the function that sets all trigger parameters at once. An 
HP E1438A generates a trigger only when it is in the TRIGGER state and the Sync line on 
the VXI backplane is released. When a trigger is generated, the HP E1438A asserts the 
Sync line.

Parameters

id is the VXI instrument session pointer returned by the age1438_init function.
136



�� ��������������������������� �
Functions listed alphabetically
adcLevel is used to set the triggering signal threshold when using the ADC trigger source. This 
threshold is (full scale × adclevel/2048), where �2048 � adclevel � 2047. There is 
hysteresis around the threshold in order to prevent multiple triggers from a single 
threshold crossing. Hysteresis is 20 ADC counts, or about 1% full scale.

Use AGE1438_ADC_LEVEL_MAX to set the maximum allowable level.

Use AGE1438_ADC_LEVEL_MIN to set the minimum allowable level.

Use AGE1438_ADC_LEVEL_DEF to set the default ADC trigger threshold.

adcLevelPtr points to the current value of the adclevel parameter.

trigDelay is the time delay, in units of output samples, between when a trigger is received and the 
first data point in the output data.

AGE1438_TRIG_DELAY_MIN selects the minimum allowable trigger delay.

AGE1438_TRIG_DELAY_MAX selects the maximum allowable trigger delay.

AGE1438_TRIG_DELAY_DEF sets the default trigger delay.

Negative values indicate a pre-trigger condition where samples prior to the trigger event 
are included in the output data. The amount of pre-trigger delay is limited to the number 
of samples which can be saved in the buffer memory. See the age1438_data_setup 
function description for the number of bytes used per sample. The delay limits depend on 
the data type as follows:

If trigDelay is <48�(DRAMsize/1.5) a bad parameter error is set.

trigDelayPtr points to the current value of the of delay.

genTrig determines whether a module may generate a trigger.

AGE1438_GENERATE_ON enables triggering.

AGE1438_GENERATE_OFF disables triggering. This is useful in multi-module systems 
with the same trigger type where you want only certain module(s) to generate a trigger.

genTrigPtr points to the current value of the gen parameter.

magLevel is used to set the triggering to detect when the envelope of a signal rises above the 
threshold while using the magnitude trigger source. It requires a positive trigger slope.

AGE1438_MAG_LEVEL_MAX  sets the maximum allowable level and AGE1438_MAG_
LEVEL_MIN sets the minimum allowable level.

AGE1438_MAG_LEVEL_FS sets the full scale magnitude trigger threshold.

AGE1438_MAG_LEVEL_DEF sets the default magnitude trigger threshold.

Trigger delay in output samples (DRAMsize in bytes)

24 bit complex
24 bit real

12 bit complex 12 bit real

Post trigger 2^31�1 2^31�1 2^31�1

Pre-trigger ���(DRAMsize/6) ���(DRAMsize/3) ���(DRAMsize/1.5)
137



�� ��������������������������� �
Functions listed alphabetically
The threshold is set to (AGE1438_MAG_LEVEL_SCALE � magLevel) dB relative to full 
scale signal, where �337 � magLevel	� 40.

Note When magLevel and sigBw (see “age1438_filter_setup” on page 76) are both set 

to zero an illegal state results, causing the setup_error status bit to be set.

Note Magnitude triggering is performed on the log magnitude of the digital filter 

output. Magnitude triggering occurs when the log magnitude of the digital filter 

output rises from BELOW the specified magnitude trigger threshold level to 

ABOVE that level. Because of these facts magnitude trigger operation will not 

always be intuitive, and there are two distinct cases that can be misinterpreted 

as improper operation:

Case 1: Magnitude triggering may not occur when the magnitude trigger 

threshold level is set below the known maximum amplitude of the input signal. 

The problem in such a case is that the trigger threshold level is actually set too 

low, so that few, if any, filtered signal samples fall below that level. A transistion 

from below the magnitude trigger threshold to above may never be detected if a 

sample is not taken while the signal is above the trigger threshold. The solution 

is to INCREASE the magnitude trigger level to the level at which there are 

frequent filter samples occuring both above and below the magnitude trigger 

threshold.

Case 2: Due to the fact that triggering is performed on the absolute (logged) 

magnitude of the filtered signal, trigger slope has no effect when magnitude 

triggering.

magLevelPtr points to the current value of the magLevel parameter.

slope selects the edge of the trigger source on which a trigger occurs for ADC and external 
triggers. AGE1438_POSITIVE sets triggering on the positive slope and AGE1438_
NEGATIVE on the negative slope. Only a positive slope is applicable to magLevel 
triggering.

slopePtr points to the current value of the of the trigger slope parameter.

trigType determines the trigger source.

AGE1438_ADC generates a trigger based on the raw data samples from the ADC.

AGE1438_MAG generates a trigger based on the log magnitude of the signal after it has 
been filtered to a selectable bandwidth around the center frequency established by the 
age1438_frequency_setup function.

AGE1438_EXTERNAL uses transitions on the signal applied to the BNC external trigger 
connector on the front panel.

AGE1438_USER disables the module from any event-driven trigger generation though it is 
still possible to force the module to trigger a measurement by pulling the Sync line once 
the module is in the trigger state. You may do this by calling the age1438_meas_start 
function, waiting for the module to reach the trigger state, then triggering the 
measurement by using age1438_meas_control to pull the Sync line.

AGE1438_IMMEDIATE triggers a measurement immediately upon entering the trigger 
state.
138



�� ��������������������������� �
Functions listed alphabetically
Note In multi-module systems all modules should be use the same trigger type in order 

to have the same actual delay.

trigTypePtr points to the current value of trigType.

Return Value

AGE1438_SUCCESS indicates that a function was successful.

Values other than AGE1438_SUCCESS indicate an error condition or other important 
status condition. To determine the error message, pass the return value to “age1438_
error_message” on page 74.

See Also

“Commands which halt active measurements” on page 149, “Default values” on page 152, 
“age1438_init” on page 87, “age1438_frequency_setup” on page 83, “age1438_data_setup” 
on page 66, “age1438_filter_setup” on page 76, “age1438_meas_start” on page 109, 
“age1438_meas_control” on page 105, “age1438_trigger_phase_actual_get” on page 135, 
“age1438_trigger_delay_actual_get” on page 134, “Managing multiple modules” in chapter 
3, “Delay and phase in triggered measurements” in chapter 3
139



�� ��������������������������� �
Functions listed alphabetically
age1438_vcxo

Selects whether the internal clock source in the module is turned on or off. This 
description also includes the query function:

age1438_vcxo_get

VXIplug&play Syntax

#include "age1438".h

ViStatus age1438_vcxo(ViSession id, ViInt16 vcxoState);

ViStatus age1438_vcxo_get(ViSession id, ViPInt16 vcxoStatePtr);

Note This command should be used only for specialized custom clock requirements. 

Most useful clock setups can be supplied by age1438_clock_setup.

Description

This function selects whether the internal clock source is turned on or off. If an internal 
source is used the age1438_vcxo_freq function selects which internal source to use.

Parameters

id is the VXI instrument session pointer returned by the age1438_init function.

vcxoState AGE1438_VCXO_OFF specifies that both internal clock sources are turned off.

AGE1438_VCXO_ON that an internal source is turned on.

vcxoStatePtr Returns a pointer to the current value of vcxoState.

Return Value

AGE1438_SUCCESS indicates that a function was successful.

Values other than AGE1438_SUCCESS indicate an error condition or other important 
status condition. To determine the error message, pass the return value to “age1438_
error_message” on page 74.

See Also

“Commands which halt active measurements” on page 149, “Default values” on page 152, 
“age1438_init” on page 87, “age1438_clock_setup” on page 57, “age1438_vcxo_freq” on 
page 141, “Using clock and sync” in chapter 3
140



�� ��������������������������� �
Functions listed alphabetically
age1438_vcxo_freq

Selects which internal clock source the module should use. This description also includes 
the query function:

age1438_vcxo_freq_get

VXIplug&play Syntax

#include "age1438".h

ViStatus age1438_vcxo_freq(ViSession id, ViInt16 vcxoFreq);

ViStatus age1438_vcxo_freq_get(ViSession id, ViInt16 vcxoFreqPtr);

Description

This function selects which internal clock source to use. The age1438_vcxo function 
determines whether the internal source is activated.

Parameters

id is the VXI instrument session pointer returned by the age1438_init function.

vcxoFreq AGE1438_VCXO_100000KHZ selects the 100 MHz internal VCXO source.

AGE1438_VCXO_102400KHZ selects the 102.4 MHz internal VCXO source.

vcxoFreqPtr Returns a pointer to the current value of vcxo_freq.

Return Value

AGE1438_SUCCESS indicates that a function was successful.

Values other than AGE1438_SUCCESS indicate an error condition or other important 
status condition. To determine the error message, pass the return value to “age1438_
error_message” on page 74.

See Also

“Commands which halt active measurements” on page 149, “Default values” on page 152, 
“age1438_init” on page 87, “age1438_clock_setup” on page 57, “age1438_vcxo_freq_
preset” on page 142, “age1438_vcxo” on page 140, “Using clock and sync” in chapter 3
141



�� ��������������������������� �
Functions listed alphabetically
age1438_vcxo_freq_preset

Selects which internal clock source should used as a default.

VXIplug&play Syntax

#include "age1438".h

ViStatus age1438_vcxo_freq_preset(ViSession id, ViInt16 vcxoFreq);

Description

This function selects which internal clock frequency should be set in NVRAM for use 
upon power-up and reset.

Parameters

id is the VXI instrument session pointer returned by the age1438_init function.

vcxoFreq AGE1438_VCXO_100000KHZ uses the 100 MHz internal source.

AGE1438_VCXO_102400KHZ uses the 102.4 MHz internal source.

Return Value

AGE1438_SUCCESS indicates that a function was successful.

Values other than AGE1438_SUCCESS indicate an error condition or other important 
status condition. To determine the error message, pass the return value to “age1438_
error_message” on page 74.

See Also

“Default values” on page 152, “age1438_init” on page 87, “age1438_clock_setup” on 
page 57, “age1438_vcxo” on page 140, “age1438_vcxo_freq” on page 141, “Using clock and 
sync” in chapter 3
142



�� ��������������������������� �
Functions listed alphabetically
age1438_vxi_clock_output

Selects which clock drives the VXI clock. This description also includes the query 
function:

age1438_vxi_clock_output_get

VXIplug&play Syntax

#include "age1438".h

ViStatus age1438_vxi_clock_output(ViSession id, ViInt16 vxiClock);

ViStatus age1438_vxi_clock_output_get(ViSession id, ViPInt16 vxiClockPtr);

Note This command should be used only for specialized custom clock requirements. 

Most useful clock setups can be supplied by age1438_clock_setup.

Description

This function selects which clock the module should use to drive it’s VXI clock.

Parameters

id is the VXI instrument session pointer returned by the age1438_init function.

vxiClock AGE1438_FRONT_PANEL_CLOCK specifies that the specified front panel clock drive the 
VXI clock.

AGE1438_CLOCK_OFF specifies not driving vxi clock on the backplane.

AGE1438_DIVIDED_ADC_CLOCK specifies using the divided ADC clock to drive the vxi 
clock.

vxiClockPtr Returns a pointer to the current value of vxiClock.

Return Value

AGE1438_SUCCESS indicates that a function was successful.

Values other than AGE1438_SUCCESS indicate an error condition or other important 
status condition. To determine the error message, pass the return value to “age1438_
error_message” on page 74.

See Also

“Default values” on page 152, “age1438_init” on page 87, “age1438_clock_setup” on 
page 57, “Using clock and sync” in chapter 3
143



�� ��������������������������� �
Functions listed alphabetically
age1438_wait

Facilitates the synchronization and control of multi-module systems.

VXIplug&play Syntax

#include "age1438".h

ViStatus age1438_wait(ViSession id);

Description

This function assures that all slave modules are completely set up before issuing 
measurement control commands to the master module. Prior to calling age1438_meas_

control for the master module in multi-module systems, you should call age1438_wait 
for each other module within the related synchronous group to which you have 
previously sent commands.

This function polls the status register of the indicated module until the AGE1438_

STATUS_HARDWARE_SET and AGE1438_STATUS_SYNC_COMPLETE bits are 
both true, or until approximately three seconds have elapsed. The function returns 
AGE1438_SUCCESS immediately after the status bits are set, or, if the time-out limit is 
reached, AGE1438_STATUS_WAIT_TIMEOUT is returned.

Parameters

id is the VXI instrument session pointer returned by the age1438_init function.

Return Value

AGE1438_SUCCESS indicates that a function was successful.

Values other than AGE1438_SUCCESS indicate an error condition or other important 
status condition. To determine the error message, pass the return value to “age1438_
error_message” on page 74.

See Also

“age1438_init” on page 87, “age1438_meas_start” on page 109, “age1438_meas_control” 
on page 105
144



�� ��������������������������� �
Equivalent numeric values for variables
Equivalent numeric values for variables

Variable Name Numeric Value

AGE1438_01_BOARD 0

AGE1438_02_BOARD 1

AGE1438_12BIT 1

AGE1438_24BIT 0

AGE1438_AC 1

AGE1438_ADC 1

AGE1438_ADC_LEVEL_DEF 0

AGE1438_ADC_LEVEL_MAX 2047

AGE1438_ADC_LEVEL_MIN �2048

AGE1438_ANTIALIAS_OFF 0

AGE1438_ANTIALIAS_ON 1

AGE1438_APPEND 2

AGE1438_ASSERT 1

AGE1438_BLOCK 0

AGE1438_BLOCKSIZE_DEF 1024

AGE1438_BLOCKSIZE_MAX 201326544

AGE1438_BLOCKSIZE_MIN 2

AGE1438_BNC_CLOCK 1

AGE1438_CENT_FREQ_DEF 0.0

AGE1438_CENT_FREQ_MAX +.5

AGE1438_CENT_FREQ_MIN �.5

AGE1438_CLOCK_OFF 0

AGE1438_COMPLEX 1

AGE1438_CONTINUOUS 1

AGE1438_CMPLXDC_OFF 0

AGE1438_CMPLXDC_ON 1

AGE1438_CUSTOM_CLOCK_SETUP -1

AGE1438_DATA_DELAY_MAX 201326544

AGE1438_DATA_DELAY_MIN 0

AGE1438_DATA_REGISTER 3

AGE1438_DC 0

AGE1438_DEBUG_LEVEL_0 0
145



�� ��������������������������� �
Equivalent numeric values for variables
AGE1438_DEBUG_LEVEL_1 1

AGE1438_DEBUG_LEVEL_2 2

AGE1438_DEBUG_LEVEL_3 3

AGE1438_DEBUG_LEVEL_4 4

AGE1438_DEBUG_LEVEL_5 5

AGE1438_DECIMATE_OFF 0

AGE1438_DECIMATE_ON 1

AGE1438_DECIMATE_SHIFT 2

AGE1438_DIVIDE_BY_10 0

AGE1438_DIVIDE_BY_38 1

AGE1438_DIVIDED_ADC_CLOCK 2

AGE1438_EXTERNAL 2

AGE1438_EXT_SAMPLE_CLOCK 2

AGE1438_FRNT_MSTR_EXT_REF 8

AGE1438_FRNT_MSTR_INT_REF 7

AGE1438_FRNT_SLAV_EXT_REF 9

AGE1438_FRNT_SYNC_EXT_SAMP 21

AGE1438_FRONT_PANEL_CLOCK 3

AGE1438_FS_MAX 103e6

AGE1438_FS_MIN 10e6

AGE1438_GENERATE 1

AGE1438_GENERATE_ON 1

AGE1438_GENERATE_OFF 0

AGE1438_IMMEDIATE 4

AGE1438_INSERT 3

AGE1438_IO_ADDRESS 1

AGE1438_IO_HANDLE 0

AGE1438_LBUS 1

AGE1438_LBUS_RESET_OFF 0

AGE1438_LBUS_RESET_ON 1

AGE1438_MAG 3

AGE1438_MAG_LEVEL_DEF �128

AGE1438_MAG_LEVEL_FS 0

AGE1438_MAG_LEVEL_MAX 40

AGE1438_MAG_LEVEL_MIN �337

AGE1438_MAG_LEVEL_SCALE 0.37628749457997662

AGE1438_NEGATIVE 1

AGE1438_OFF VI_OFF

AGE1438_OFFS_DAC_MAX 255

AGE1438_OFFS_DAC_MIN 0

Variable Name Numeric Value
146



�� ��������������������������� �
Equivalent numeric values for variables
AGE1438_ON VI_ON

AGE1438_PIPELINE 0

AGE1438_POSITIVE 0

AGE1438_PRESCALE_BY_1 0

AGE1438_PRESCALE_BY_4 1

AGE1438_RANGE_0 0

AGE1438_RANGE_1 1

AGE1438_RANGE_2 2

AGE1438_RANGE_3 3

AGE1438_RANGE_4 4

AGE1438_RANGE_5 5

AGE1438_RANGE_6 6

AGE1438_RANGE_7 7

AGE1438_RANGE_8 8

AGE1438_RANGE_9 9

AGE1438_RANGE_10 10

AGE1438_RANGE_11 11

AGE1438_RANGE_12 12

AGE1438_RANGE_13 13

AGE1438_RANGE_14 14

AGE1438_RANGE_15 15

AGE1438_RANGE_16 16

AGE1438_RANGE_17 17

AGE1438_RANGE_MAX 17

AGE1438_RANGE_MIN 0

AGE1438_RANGE_TIME_MAX 20

AGE1438_RANGE_TIME_MIN 0

AGE1438_REAL 0

AGE1438_RELEASE 0

AGE1438_REAR_MSTR_EXT_REF 15

AGE1438_REAR_MSTR_INT_REF 14

AGE1438_REAR_SLAV_EXT_REF 16

AGE1438_REAR_SYNC_EXT_SAMP 22

AGE1438_RM_HANDLE 2

AGE1438_SIG_BW_MAX 18

AGE1438_SIG_BW_MIN 0

AGE1438_SIGNAL_OFF 0

AGE1438_SIGNAL_ON 1

AGE1438_SIMPLE_EXT_REF 1

AGE1438_SIMPLE_EXT_SAMP 2

Variable Name Numeric Value
147



�� ��������������������������� �
Equivalent numeric values for variables
AGE1438_SIMPLE_INT_REF 0

AGE1438_SMB_CLOCK 4

AGE1438_STR_LEN_MIN 256

AGE1438_SYNC_FRNT_TO_REAR 0

AGE1438_SYNC_OFF 0

AGE1438_SYNC_ON 1

AGE1438_SYNC_OUT_BOTH 3

AGE1438_SYNC_OUT_OFF 0

AGE1438_SYNC_OUT_SMB 2

AGE1438_SYNC_OUT_VXI 1

AGE1438_SYNC_REAR_TO_FRNT 1

AGE1438_TRIG_DELAY_DEF 0

AGE1438_TRIG_DELAY_MAX (2e+31�1)

AGE1438_TRIG_DELAY_MIN �191999952

AGE1438_TRIG_PHASE_0 0

AGE1438_TRIG_PHASE_90 16384

AGE1438_TRIG_PHASE_180 �32768

AGE1438_TRIG_PHASE_270 �16384

AGE1438_USER 0

AGE1438_VCXO_100000KHZ 0

AGE1438_VCXO_102400KHZ 1

AGE1438_VCXO_EXT_REF 1

AGE1438_VCXO_INTERNAL 0

AGE1438_VCXO_OFF 0

AGE1438_VCXO_ON 1

AGE1438_VME 0

AGE1438_VXI_CLOCK 5

AGE1438_XFERSIZE_DEF 1024

AGE1438_XFERSIZE_MAX 96000000

AGE1438_XFERSIZE_MIN 2

Variable Name Numeric Value
148



�� ��������������������������� �
Commands which halt active measurements
Commands which halt active measurements

age1438_adc_clock

age1438_clock_recover

age1438_clock_setup

age1438_data_blocksize

age1438_data_delay

age1438_data_resolution

age1438_data_type

age1438_data_xfersize

age1438_filter_bw

age1438_filter_decimate

age1438_filter_setup

age1438_front_panel_clock_input

age1438_init

age1438_input_autozero

age1438_input_range_auto

age1438_meas_control

age1438_meas_init

age1438_meas_start

age1438_reset

age1438_reset_hard

age1438_self_test

age1438_state_recall

age1438_trigger_delay

age1438_trigger_setup

age1438_vcxo

age1438_vcxo_freq

Commands which void synchronized multi-module setups:

age1438_clock_setup and low-level clock setup functions
age1438_clock_recover

age1438_input_autozero

age1438_input_range_auto

age1438_self_test

age1438_state_recall
149



�� ��������������������������� �
Error messages
Error messages

Warnings and errors are based on the value VI_ERROR

Error
Number

Parameter Description

0x0000 AGE1438_SUCCESS No error, command succeeded

0x80000000 AGE1438_ERR_BASE Base number for error values

AGE1438_ERR_BASE +
0x0001

AGE1438_BAD_COMMAND Invalid command code

AGE1438_ERR_BASE +
0x0002

AGE1438_INVALID_HW_CONFIG The hardware configuration is not supported

AGE1438_ERR_BASE +
0x0003

AGE1438_PARM_ERROR Invalid command parameter

AGE1438_ERR_BASE +
0x0004

AGE1438_NV_SAVE_ERROR Error while saving to non-volatile memory

AGE1438_ERR_BASE +
0x0005

AGE1438_DOWNLOAD_ERROR Error while downloading new firmware

AGE1438_ERR_BASE +
0x0006

AGE1438_SERIAL_TIMEOUT Serial bus time-out; hardware error

AGE1438_ERR_BASE +
0x0007

AGE1438_BYTE_SWAP_ERROR Incorrect byte-order setting

AGE1438_ERR_BASE +
0x0008

AGE1438_START_ERROR Start error

AGE1438_ERR_BASE +
0x0009

AGE1438_HARDWARE_FAILURE Hardware failure

AGE1438_ERR_BASE +
0x000a

AGE1438_WATCHDOG_RESET_ERROR Watchdog timer caused a hard reset, possibly 
due to a hardware problem

AGE1438_ERR_BASE +
0x0011

AGE1438_NO_DATA_MEASUREMENT_IN_PROGRESS No data available, a measurement is in 
progress.

AGE1438_ERR_BASE +
0x00102

AGE1438_NO_DATA_MEASUREMENT_PAUSED No data available, the measurement is paused

AGE1438_ERR_BASE +
0x0013

AGE1438_NO_DATA_WAITING_FOR_TRIGGER No data available, trigger has not occurred

AGE1438_ERR_BASE +
0x0014

AGE1438_NO_DATA_WAITING_ FOR_ARM No data available, acquiring pre-trigger data

AGE1438_ERR_BASE +
0x0016

AGE1438_NO_E1438_FOUND No AGE1438 found at specified logical 
address

AGE1438_ERR_BASE +
0x0017

AGE1438_PROC_READY_TIMEOUT Time-out is waiting for AGE1438 command 
processor

AGE1438_ERR_BASE +
0x0018

AGE1438_MEMORY_ALLOCATION_ERROR Memory allocation error
150



�� ��������������������������� �
Error messages
Errors required for SICL/SPIL when using HP E1485

AGE1438_ERR_BASE +
0x001b

AGE1438_INTERFACE_HARDWARE_INCOMPATIBILE Interface hardware incompatible with 
instrument drivers

AGE1438_ERR_BASE +
0x001d

AGE1438_NULL_ID ID parameter is zero, function aborted

AGE1438_ERR_BASE +
0x0001e

AGE1438_STATUS_WAIT_TIMEOUT Time-out waiting for desired status

AGE1438_ERR_BASE +
0x00067

AGE1438_AUTOZERO_ERROR Autozero error

AGE1438_ERR_BASE +
0x006c

AGE1438_AUTORANGE_ERROR Autorange error

AGE1438_ERR_BASE +
0x0080

AGE1438_SETUP_ERROR Hardware setup error

AGE1438_ERR_BASE +
0x0081

AGE1438_SYNC_NOT_COMPLETE Command or Idle assertion did not complete

Error
Number

Parameter Description

Error
Number

Parameter Description

AGE1438_ERR_BASE +
0x0082

AGE1438_UNKNOWN_STATUS Unknown error

AGE1438_ERR_BASE +
0x0083

AGE1438_SHARED_MEMORY_MAP_ERROR Conflict in memory mapping

AGE1438_ERR_BASE +
0x0084

AGE1438_SPIL_ERROR Unexpected SPIL error
151



�� ��������������������������� �
Default values
Default values

Function Parameter  Default Value

“age1438_adc_clock” on page 51 adcClock VCXO_INTERNAL

“age1438_adc_divider” on page 52 adcDivider DIVIDE_BY_10

“age1438_clock_setup” on page 57 clockSetup SIMPLE_INT_REF

“age1438_data_setup” on page 66 blocksize 1024

dataDelay DATA_DELAY_MIN

dataType REAL

mode BLOCK

port VME

resolution 12BIT

“age1438_data_xfersize” on page 71 xfersize 1024

“age1438_filter_setup” on page 76 decimate DECIMATE_OFF

sigBw 0

“age1438_frequency_setup” on page 83 cmplxDC CMPLXDC_OFF

centerFreq 0

sync SYNC_OFF

“age1438_front_panel_clock_input” on page 86 fpClock CLOCK_OFF

“age1438_input_setup” on page 95 antialias ANTIALIAS_ON

coupling DC

range RANGE_MAX

signal SIGNAL_ON

“age1438_interrupt_setup” on page 99 mask 0

priority 0

“age1438_lbus_mode” on page 101 lbusMode PIPELINE

“age1438_lbus_reset” on page 103 lbusReset ON

“age1438_meas_control” on page 105 idle RELEASE

sync RELEASE

“age1438_reference_clock” on page 118 refClock VXI_CLOCK

“age1438_reference_prescaler” on page 119 refPrescaler PRESCALE_BY_1

“age1438_smb_clock_output” on page 126 smbClock CLOCK OFF

“age1438_sync_clock” on page 131 syncClock DIVIDED_ADC_CLOCK

“age1438_sync_direction” on page 132 syncDirection FRNT_TO_REAR

“age1438_sync_output” on page 133 syncOutput SYNC_OUT_OFF
152



�� ��������������������������� �
Default values
“age1438_trigger_setup” on page 136 adcLevel 0

genTrig ON

magLevel �128

slope POSITIVE

trigDelay 0

trigType IMMEDIATE

“age1438_vcxo” on page 140 vcxoState VCXO_ON

“age1438_vcxo_freq” on page 141 vcxoFreq VCXO_100000KHZ

“age1438_vcxo_freq_preset” on page 142 vcxoFreq VCXO_100000KHZ

“age1438_vxi_clock_output” on page 143 vxiClock CLOCK_OFF

Function Parameter  Default Value
153



�� ��������������������������� �
VXIplug&play Syntax Quick Reference
VXIplug&play Syntax Quick Reference

ViStatus age1438_adc_clock(ViSession id, ViInt16 adcClock)
ViStatus age1438_adc_clock_get(ViSession id, ViPInt16 adcClockPtr)
ViStatus age1438_adc_divider(ViSession id, ViInt16 adcDivider)
ViStatus age1438_adc_divider_get(ViSession id, ViPInt16 adcDividerPtr)
ViStatus age1438_attrib_get(ViSession id, ViInt16 attribute, ViPint32 value)
ViStatus age1438_cal_get(ViSession id, ViInt16 board, ViPInt32 

datestampPtr)
ViStatus age1438_clock_fs(ViSession id, ViReal64 fs)
ViStatus age1438_clock_fs_get(ViSession id, ViPReal64 fsPtr)
ViStatus age1438_clock_recover(ViSession id)
ViStatus age1438_clock_setup(ViSession id, ViInt16 clockSetup)
ViStatus age1438_clock_setup_get(ViSession id, ViPInt16 clockSetupPtr)
ViStatus age1438_close(ViSession id)
ViStatus age1438_data_memsize_get(ViSession id, ViPInt16 memSizePtr)
ViStatus age1438_data_scale_get(ViSession id, ViPReal64 scalePtr)
ViStatus age1438_data_setup(ViSession id, ViInt16 dataType, ViInt16 

resolution, ViInt16 mode, ViInt32 blocksize, ViInt32 dataDelay, ViInt16 
reserved, ViInt16 port)

ViStatus age1438_data_blocksize(ViSession id, ViInt32 blocksize)
ViStatus age1438_data_blocksize_get(ViSession id, ViPint32 blocksizePtr)
ViStatus age1438_data_delay(ViSession id, ViInt32 dataDelay)
ViStatus age1438_data_delay_get(ViSession id, ViPInt32 dataDelayPtr)
ViStatus age1438_data_mode(ViSession id, ViInt16 mode)
ViStatus age1438_data_mode_get(ViSession id, ViPInt16 modePtr)
ViStatus age1438_data_port(ViSession id, ViInt16 port)
ViStatus age1438_data_port_get(ViSession id, ViPInt16 portPtr)
ViStatus age1438_data_resolution(ViSession id, ViInt16 resolution)
ViStatus age1438_data_resolution_get(ViSession id, ViPInt16 resolutionPtr)
ViStatus age1438_data_type(ViSession id, ViInt16 dataType)
ViStatus age1438_data_type_get(ViSession id, ViPInt16 dataTypePtr)
ViStatus age1438_data_xfersize(ViSession id, ViInt32 xfersize)
ViStatus age1438_data_xfersize_get(ViSession id, ViPInt32 xfersizePtr)
ViStatus age1438_driver_debug_level(ViSession id, ViInt16 debugLevel)
ViStatus age1438_driver_debug_level_get(ViSession id, ViPInt16 

debugLevelPtr)
ViStatus age1438_error_message(ViSession id, ViStatus statusCode, ViChar 

errorMessage[])
ViStatus age1438_error_query(ViSession id, ViPint32 errorCode, ViChar 

errorMessage[])
ViStatus age1438_filter_setup(ViSession id, ViInt16 sigBw, ViInt16 

decimate)
ViStatus age1438_filter_decimate(ViSession id, ViInt16 decimate)
ViStatus age1438_filter_decimate_get(ViSession id, ViPInt16 decimatePtr)
154



�� ��������������������������� �
VXIplug&play Syntax Quick Reference
ViStatus age1438_filter_bw(ViSession id, ViInt16 sigBw)
ViStatus age1438_filter_bw_get(ViSession id, ViPInt16 sigBwPtr)
ViStatus age1438_filter_sync(ViSession id)
ViStatus age1438_frequency_center_raw(ViSession id, ViInt32 phase, ViInt32 

interpolate)
ViStatus age1438_frequency_center_raw_get(ViSession id, ViPInt32 

phasePtr, ViPInt32 interpolatePtr)
ViStatus age1438_frequency_setup(ViSession id, ViInt16 cmplxDC, ViInt16 

sync, ViReal64 centerFreq)
ViStatus age1438_frequency_center(ViSession id, ViReal64 centerFreq)
ViStatus age1438_frequency_center_get(ViSession id, ViPReal64 

centerFreqPtr)
ViStatus age1438_frequency_cmplxdc(ViSession id, ViInt16 cmplxDC)
ViStatus age1438_frequency_cmplxdc_get(ViSession id, ViPInt16 

cmplxDCPtr)
ViStatus age1438_frequency_sync(ViSession id, ViInt16 sync)
ViStatus age1438_frequency_sync_get(ViSession id, ViPInt16 syncPtr)
ViStatus age1438_front_panel_clock_input(ViSession id, ViInt16 fpClock)
ViStatus age1438_front_panel_clock_input_get(ViSession id, ViPInt16 

fpClockPtr)
ViStatus age1438_init(ViRsrc rsrcName, ViBoolean idQuery, ViBoolean 

resetInstr, ViPSession id)
ViStatus age1438_input_autozero(ViSession id)
ViStatus age1438_input_offset(ViSession id, ViInt16 coarseDac, ViInt16 

fineDac)
ViStatus age1438_input_offset_get(ViSession id, ViPInt16 coarseDacPtr, 

ViPInt16 fineDacPtr)
ViStatus age1438_input_offset_save(ViSession id)
ViStatus age1438_input_range_auto(ViSession id, ViReal64 sec)
ViStatus age1438_input_range_convert(ViSession id, ViInt16 rangeIndex, 

ViPReal64 rangeVoltsPtr)
ViStatus age1438_input_setup(ViSession id, ViInt16 reserved, ViInt16 range, 

ViInt16 coupling, ViInt16 antiAlias, ViInt16 signal)
ViStatus age1438_input_alias_filter(ViSession id, ViInt16 antiAlias)
ViStatus age1438_input_alias_filter_get(ViSession id, ViPInt16 

antiAliasPtr)
ViStatus age1438_input_coupling(ViSession id, ViInt16 coupling)
ViStatus age1438_input_coupling_get(ViSession id, ViPInt16 couplingPtr)
ViStatus age1438_input_range(ViSession id, ViInt16 range)
ViStatus age1438_input_range_get(ViSession id, ViPInt16 rangePtr)
ViStatus age1438_input_signal(ViSession id, ViInt16 signal)
ViStatus age1438_input_signal_get(ViSession id, ViPInt16 signalPtr)
ViStatus age1438_interrupt_restore(ViSession id)
ViStatus age1438_interrupt_setup(ViSession id, ViInt16 intrNum, ViInt16 

priority, ViInt16 mask)
ViStatus age1438_interrupt_mask_get(ViSession id, ViInt16 intrNum, 

ViPInt16 maskPtr)
ViStatus age1438_interrupt_priority_get(ViSession id, ViInt16 intrNum, 

ViPInt16 priorityPtr)
ViStatus age1438_lbus_mode(ViSession id, ViInt16 lbusMode)
ViStatus age1438_lbus_mode_get(ViSession id, ViPInt16 lbusModePtr)
ViStatus age1438_lbus_reset(ViSession id, ViInt16 lbusReset)
155



�� ��������������������������� �
VXIplug&play Syntax Quick Reference
ViStatus age1438_lbus_reset_get(ViSession id, ViPInt16 lbusResetPtr)
ViStatus age1438_meas_control(ViSession id, ViInt16 idle, ViInt16 sync)
ViStatus age1438_meas_init(ViSession id)
ViStatus age1438_meas_start(ViSession id)
ViStatus age1438_options_get(ViSession id, ViChar options[])
ViStatus age1438_product_id_get(ViSession id, ViChar productId[])
ViStatus age1438_read(ViSession id, ViReal32 data[], ViInt32 sampleCount, 

ViPInt16 overloadPtr)
ViStatus age1438_read64(ViSession id, ViReal64 data[], ViInt32 

sampleCount, ViPInt16 overloadPtr)
ViStatus age1438_read_raw(ViSession id, ViPInt16 data[], ViInt32 

wordCount, ViPInt16 overloadPtr)
ViStatus age1438_reference_clock(ViSession id, ViInt16 refClock)
ViStatus age1438_reference_clock_get(ViSession id, ViPInt16 refClockPtr)
ViStatus age1438_reference_prescaler(ViSession id, ViInt16 refPrescaler)
ViStatus age1438_reference_prescaler_get(ViSession id, ViPInt16 

refPrescalerPtr)
ViStatus age1438_reset(ViSession id)
ViStatus age1438_reset_hard(ViSession id)
ViStatus age1438_revision_query(ViSession id, ViChar driverRev[], ViChar 

instrRev[])
ViStatus age1438_self_test(ViSession id, ViPInt16 testResult, ViChar 

testMessage[])
ViStatus age1438_serial_number(ViSession id, ViChar serialNum[])
ViStatus age1438_serial_number_get(ViSession id, ViChar serialNum[])
ViStatus age1438_smb_clock_output(ViSession id, ViInt16 smbClock)
ViStatus age1438_smb_clock_output_get(ViSession id, ViPInt16 

smbclockPtr)
ViStatus age1438_state_recall(ViSession id)
ViStatus age1438_state_save(ViSession id)
ViStatus age1438_status_get(ViSession id, ViPInt16 statusPtr)
ViStatus age1438_sync_clock(ViSession id, ViInt16 syncClock)
ViStatus age1438_sync_clock_get(ViSession id, ViPInt16 syncClockPtr)
ViStatus age1438_sync_direction(ViSession id, ViInt16 syncDirection)
ViStatus age1438_sync_direction_get(ViSession id, ViPInt16 

syncDirectionPtr)
ViStatus age1438_sync_output(ViSession id, ViInt16 syncOutput)
ViStatus age1438_sync_output_get(ViSession id, ViPInt16 syncOutputPtr)
ViStatus age1438_trigger_delay_actual_get(ViSession id, ViPInt32 

actualDelayPtr)
ViStatus age1438_trigger_phase_actual_get(ViSession id, ViPInt16 

actualPhasePtr)
ViStatus age1438_trigger_setup(ViSession id, ViInt16 trigType, ViInt32 

trigDelay, ViInt16 adcLevel, ViInt16 magLevel, ViInt16 slope, ViInt16 genTrig)
ViStatus age1438_trigger_adclevel(ViSession id, ViInt16 adcLevel)
ViStatus age1438_trigger_adclevel_get(ViSession id, ViPInt16 adcLevelPtr)
ViStatus age1438_trigger_delay(ViSession id, ViInt32 trigDelay)
ViStatus age1438_trigger_delay_get(ViSession id, ViPint32 trigDelayPtr)
ViStatus age1438_trigger_gen(ViSession id, ViInt16 genTrig)
ViStatus age1438_trigger_gen_get(ViSession id, ViPInt16 genTrigPtr)
ViStatus age1438_trigger_maglevel(ViSession id, ViInt16 magLevel)
ViStatus age1438_trigger_maglevel_get(ViSession id, ViPInt16 magLevelPtr)
156



�� ��������������������������� �
VXIplug&play Syntax Quick Reference
ViStatus age1438_trigger_slope(ViSession id, ViInt16 slope)
ViStatus age1438_trigger_slope_get(ViSession id, ViPInt16 slopePtr)
ViStatus age1438_trigger_type(ViSession id, ViInt16 trigType)
ViStatus age1438_trigger_type_get(ViSession id, ViPInt16 trigTypePtr)
ViStatus age1438_vcxo(ViSession id, ViInt16 vcxoState)
ViStatus age1438_vcxo_get(ViSession id, ViPInt16 vcxoStatePtr)
ViStatus age1438_vcxo_freq(ViSession id, ViInt16 vcxoFreq)
ViStatus age1438_vcxo_freq_get(ViSession id, ViInt16 vcxoFreqPtr)
ViStatus age1438_vcxo_freq_preset(ViSession id, ViInt16 vcxoFreq)
ViStatus age1438_vxi_clock_output(ViSession id, ViInt16 vxiClock)
ViStatus age1438_vxi_clock_output_get(ViSession id, ViPInt16 vxiClockPtr)
ViStatus age1438_wait(ViSession id)
157



�� ��������������������������� �
VXIplug&play Syntax Quick Reference
158



5

5 Module Description



!��"	��#�� �
$�
��
Front Panel Description
Front Panel Description

$FFHVV 2YHUORDG

���0VD�V��$'&�
��),/7(5��),)2

,Q
W
H
U
P
R
G
X
OH
��
�(
&
/
��

&ORFN

6\QF

([W�7ULJJHU

([W�&ORFN�5HI

$QDORJ�,Q

�9UPV��0D[

�0)
	�����
����
���
���*	�
��
��������

���
���
���
.��&�	���

�-��
�1������
��
*���
��
�1����
���

�-��
	���
���
���
��������

�
���*	�
��
������#

��
��
��
��/
��������
��
0��
	���	�
���
�*��
.�
���������
��
<�
����
��
����
���
��
���
�����#

(���
��
���
/6�
���*�
��
�����	�
�����
���
.�

*���
��
�����
���
��;*�������
��
�
.	��&
��
����#
(���
���*�
��
��+��*�	��=
�4
���
���������=

���
����
���������#

(���
��
���
����
���*�
��
���
�)�#

��
��
�
����	�+�����
���*�
���������
����
<�
����#

�	��&
01������
��
*���
��
�������
���

�-����
�������
���
���
��������
�
���*	�
��
������#

��
��
��
��/
��������
��
0��
	���	�
���
�*��
.�
���������
��
<�
����
��
����
���
��
���
�����#

�0)
	�����
�������
���
���*�
����
��

�1������=
���*����
��
���	���
��
���
�)�

(���
��
�
/6�
���*�
��
((�=
0��=
�
����
����
�����	�
�����
���
.�
*���
��
���
�)�
����	�
�	��&#
(���
���*�
���
�	��
.�
*���
��
���
�-����
��;*���-
�������#
(���
���*�
��
��
��*�	��=
���
���
�
4
���
���������#
160



!��"	��#�� �
$�
��
VXI backplane connections
VXI backplane connections

Power Supplies and Ground

The HP E1438A conforms to the VME and VXI specifications for pin assignment. The 
current drawn from each supply is given in Technical Specifications.

Data Transfer Bus

The HP E1438A conforms to the VME and VXI specifications for pin assignment and 
protocol. Only A16/D16/D32 data transfers are supported. Thus the upper addresses are 
ignored.

DTB Arbitration Bus

The HP E1438A module is not capable of requesting bus control, thus it does not use the 
Arbitration bus. To conform to the VME and VXI specifications, it passes the bus lines 
through.

Priority Interrupt Bus

The HP E1438A generates interrupts by applying a programmable mask to its status bits. 
The priority of the interrupt is determined by the interrupt priority setting in the control 
register.

Utility Bus

The VME specification provides a set of lines collectively called the utility bus. Of these 
lines, the HP E1438A only uses the SYSRESET* line. 

Pulling the SYSRESET* line low (a hardware reset) has the same effect as setting the 
reset bit in the Control Register (a software reset), with two exceptions. The exceptions 
are: 

• The Control Register is also reset. 

• All logic arrays are reloaded. 

Reloading the logic arrays enables the hardware reset to recover from power dropouts 
which may invalidate the logic setup. 

Local Bus

The VXI specification includes a 12-wire local bus between adjacent module slots. Using 
the local bus, Hewlett-Packard has defined a standard byte-wide ECL protocol that 
transfers data from left to right at up to 100 Mbyte/s. The HP E1438A can be programmed 
to output its data using this high speed port instead of the VME data output register. The 
Data Port Control register determines which output port is used.
161



!��"	��#�� �
$�
��
VXI backplane connections
Trigger Lines

The VXI specification provides 8 TTL and 2 ECL trigger lines which can be used for 
module-specific signaling. When programmed in a multi-input configuration, the 
HP E1438A uses the ECL trigger lines, designating ECLTRG0 as the Sync line and 
ECLTRG1 as the 10MHz Reference Clock (CLOCK). These lines can be extended to other 
mainframes using the SMB connectors on the front panel. The SMB connectors can also 
be used for intermodule synchronization within a mainframe, leaving the ECL trigger lines 
free for other purposes.

The CLOCK line is the master reference clock for a synchronous system of multiple 
HP E1438A modules. Only one HP E1438A module in each mainframe is allowed to drive 
this line.

The Sync line is used to send timing signals among HP E1438A modules in a multi-input 
system. Any module which drives this line must do so synchronously with CLOCK so that 
transitions on Sync do not occur near the rising edge of CLOCK. This ensures that all 
modules with a synchronous state machine clocked on CLOCK interprets Sync in a 
consistent manner for each cycle of the state machine. Sync is used for synchronizing, 
arming, and triggering signals between HP E1438A modules. The interpretation of the 
Sync line is dependent on the states of the module described in “The measurement loop” 
in chapter 3. The HP E1438A module is also capable of controlling the Sync line 
synchronously via the control register.

For more information on multi-module operation see “Managing multiple modules” in 
chapter 3.
162



!��"	��#�� �
$�
��
Block diagram and description
Block diagram and description

More detailed descriptions of selected elements in the diagram below appear further on in 
this section.

Clock Generation

The usual source for a clock signal is the 100 MHz or the 102.4 MHz crystal oscillator 
inside the HP E1438A. However, the HP E1438A can also accept an external clock signal 
through a front-panel BNC "Ext Clock/Ref". This signal can be TTL, ECL, or sine wave.

�������*	�
�	��&
��/

��

!*�

�	��&
��2���
����
���*	��

��

!*�

�������*	�
�-��
��/

 ���
���
)���������
,�	�����

���	��
���*�

�����*���� ���	���� ���	��������+�	���
,�	��

����+�	���
,�	��

����	���
�)�

�	��&
'��������

01����	
�	��&23�������
/6�

����	
/*�

(����
)��������

01����	
(���� (����

�-��
��2���
����
���*	��

)���
!*��*�

����-
�����		�

�)3��
����-

����
)���
3������

�����	
3������

���
/��&�	���
163



!��"	��#�� �
$�
��
Block diagram and description
In a system using more than one HP E1438A, the ADCs can be synchronized by 
programming them to use a common ECL line on the backplane as a reference. One of the 
modules can be the clock master that drives this line. This master clock can be extended 
to other mainframes by connecting a "Intermodule Clock" SMB connector to a 
"Intermodule Clock" SMB connector on an HP E1438A in the second mainframe.

Input

The input is terminated by the input amplifier which follows the first half of the anti-alias 
filter. The bandwidth of the input is 40 MHz. The attenuation of the input is 
programmable.

Under program control, the input signal can be ac coupled. This allows the system to 
measure low level ac signals in the presence of a large dc offset.

Anti-alias Filter

Since the normal ADC sample rate is 100 MHz, a complete representation of the input 
signal can be achieved only for bandwidths up to 50 MHz. Frequency components above 
50 MHz can cause ambiguous results (aliasing).

The anti-alias filter attenuates these high frequency components to reduce aliasing. The 
anti-alias filter in the HP E1438A is flat to 40 MHz and rejects signals above 60 MHz by at 
least 90 dB. Thus the 0-40 MHz frequency range of the sampled signal is �90 dB alias free. 
The filter’s transition band from 40 MHz to 60 MHz affects flatness and allow some 
aliasing in the sampled signal frequency range of 40 MHz to 50 MHz.

In cases where alias filtering is not necessary the HP E1438A can be programmed to 
bypass the anti-alias filter. To avoid incorrect results, the alias filter bypass mode should 
be used with caution; it is not recommended for normal operation.

Sampling ADC

The heart of the HP E1438A is a precision analog-to-digital converter (ADC). The ADC 
generates 12 bit outputs at a sample rate up to 102.4 MHz.

01�
�	��&23��
/6�#

�������*	�
�	��&
��/

����	

���

��/

/6�

���

�����
�������

���2��"#$
��%

���!


����2��#"$
��%

���
/*�
3��
�	&

����	�
�	&#
��
�)�
���2��"#$
��%
164



!��"	��#�� �
$�
��
Block diagram and description
Zoom and Decimation Filtering

This section uses digital circuitry to allow programmable changes in the center frequency 
and signal bandwidth of the HP E1438A (zoom). This is done at high speed for real-time 
operation.

Bandwidth is controlled by a chain of digital low-pass filters (see the diagram below). 
Each of the filters reduces the bandwidth by a factor of two (decimation). With the ADC 
sample rate (fs) set to the standard internal 100.0 MHz rate, the bandwidth choices are 40 
MHz, 20 MHz, 10 MHz,…76 Hz around the programmed local-oscillator (LO) frequency.

Real and imaginary components of the signal are each computed to 24-bit precision, so 
the complex output of the decimation filtering block contains 48 bits. Whether or not all 
of these bits are stored in memory is programmable.

Memory Controller and SDRAM Memory

The HP E1438A can be programmed to save the real component of the signal or to save 
the complete complex signal. The data precision can be set to 12 bits or 24 bits. Thus, 
each sample occupies from 1.5 to 6 bytes of memory in the SDRAM. The memory 
controller block packs the selected data into 72-bit words which are stored in the SDRAM 
memory. Since the standard SDRAM depth is 2M � 72 bits, it is possible to hold up to 12-
Msamples in memory at one time.

The memory may be configured either in block mode or in continuous mode. In block 
mode, data collection initiated by a trigger proceeds until a specified block length is 
captured. The measurement is then paused so that the data can be read out. This mode is 
useful in capturing single transient events or whenever the output data rate is too high to 
be read and processed in real time.

>�
���
�����

�����

����	
!���		���

,�2$

,�2$

"1
)�������

"1
)�������

"1
)�������

"1
)�������

,�2? ,�2"��

,�2"��,�2?

)�(�
!8(�8(
�0�0�(�!6
�6)
�8�(���0��6'
���*�
���
�)�

�

�

�

�

��

��

��

��

3��	

����

�

�

��

��
165



!��"	��#�� �
$�
��
Block diagram and description
In continuous mode, data collection is initiated by a trigger and continues as long as the 
SDRAM memory does not overflow. Data may be read out of the memory while the 
measurement is in progress. If the reading of data is sufficiently fast, the SDRAM memory 
never overflows and the measurement continues indefinitely. If the SDRAM memory 
should ever overflow then the measurement stops and waits for data to be read out, the 
measurement to be re-armed, and a new trigger to be initiated. This mode of operation is 
useful for real-time applications that employ a high speed signal processor to 
continuously read and operate on each sample of data. Data can be read from the SDRAM 
memory in bursts to accommodate pauses for such things as disk access times or block 
mode computations.

The effective trigger time may be offset from the actual trigger event by programming a 
trigger timing offset. See the Technical Specifications for the limits of the pre-trigger and 
post-trigger offset.

Data Output

There are two ways to output data from the HP E1438A: by way of the VXI backplane or 
by way of the local bus.

To use the VXI backplane, the HP E1438A can be programmed so that the output of the 
memory controller is sent to the Send Data register. The 12- or 24-bit sample data is zero-
padded out to 16 or 32 bits. The register can then be read by any controller compatible 
with the VME standard. Maximum data flow is about 2 MB/s.

The local bus allows data transfers over a high speed 8-bit ECL bus to an adjacent module 
(to the right) in the VXI mainframe. Multiple adjacent HP E1438A modules can send data 
to one signal processor module. The signal processor must be one which supports the 
Hewlett-Packard ECL local bus protocol, such as the HP E1485A/B. In addition to higher 
speed (up to 66 MB/s), the local bus has the advantage that data can be output at the same 
time that control signals are being sent over the VXI backplane.

In both of the data output modes, the samples must be read out sequentially, offset by the 
trigger delay.

Trigger Detection

The trigger event used to start a measurement can be generated in five different ways: 

• Software

• External

• ADC threshold

• Log-magnitude

• Immediate

External and ADC threshold triggering modes support slope selection. In ADC or log-
magnitude mode the trigger threshold has hysteresis (20 ADC sample counts for the ADC 
trigger, and 1.5 dB for the magnitude trigger) to prevent noise-generated triggers of the 
wrong slope. Log magnitude triggering is based on the magnitude of the complex signal 
after zooming and filtering and only supports positive slope trigger detection.

For external mode, a trigger signal must be supplied at the "Ext Trigger" connector on the 
front panel. This input is AC coupled with an impedance of 1 K ohm so any signal with a 
sharp rising or falling transition greater than 100 mV (i.e. TTL or ECL) can be used as an 
166



!��"	��#�� �
$�
��
Block diagram and description
external trigger source. Minimum pulse width is 300 ns. Because the "Ext Trigger" input is 
an ac-coupled comparator with hysteresis, its initial state is unknown. Before using it, a 
trigger pulse should be applied to initialize it to a known state.

Any HP E1438A module can trigger other HP E1438A modules using a shared sync line on 
the VXI backplane. This Sync line can be extended to other mainframes by connecting a 
"Sync" SMB connector in one mainframe to a "Sync" SMB connector on a HP E1438A in 
the second mainframe. All modules in a synchronous system are triggered on the same 
ADC sample.

The HP E1438A hardware samples the trigger source once every sample clock, so the 
trigger condition must be present for at least one sample clock in order to be recognized.

Control Registers

The HP E1438A module is controlled by firmware using registers mapped into the 16-bit 
VXI address space.
167



!��"	��#�� �
$�
��
Block diagram and description
168



0

6 Replacing Assemblies



��$	� 
��������%	
��
Replaceable parts
Replaceable parts

The HP E1438A must be returned to Agilent Technologies for service or calibration. This 
section shows you how to add or replace memory modules.

For information on upgrading your module or replacing parts, contact your local Agilent 
Technologies sales and service office. See the Technical Specifications for a list of office 
locations and addresses.

Ordering Information

To order HP parts in the U.S., call HP Parts Direct Ordering at (800) 798-5487. Outside the 
U.S., please contact your local HP parts center.
170



��$	� 
��������%	
��
Replaceable parts
Code Numbers

The following table provides the name and location for the manufacturers’ code numbers 
(Mfr. Code) listed in the replaceable parts tables.

Mfr. No. Mfr. Name Location

28480 Agilent Technologies Company Palo Alto, CA U.S.A.

03647 Instrument Specialties Co. Inc. Delaware Water Gap, PA U.S.A.

04637 Phelps Dodge Corp. New York, NY U.S.A.

16044 Kingston Technology Corp. Fountain Valley,.CA U.S.A

07606 ITW Inc. / Medalist Glenview, IL U.S.A.

04605 Fischer Special Mfg. Co Cincinnati, OH U.S.A.

05610 Textron, Inc. Providence, RI U.S.A.
171



��$	� 
��������%	
��
Replaceable parts
Assemblies

Caution The module is static sensitive. Use the appropriate precautions when removing, 

handling, and installing to avoid damage.

03���

03���

03���

$��RU�$�

03���

03���

03���

03���

03���

03���
03���

03���

03���

03���

03���

03���

03���

03���

03���

03���

03���

03���

03���

03���

03���
03���
172



��$	� 
��������%	
��
Replaceable parts
Ref Des
HP Part 
Number

Qty Description MfrCode Part Number

E1438-69201 1 EXCHANGE MODULE 28480 E1438-69201

A1 1818-7889 1 SYNC DIMM 16MB 2X72 66MHZ - 
16 M mem

16044 KTM66X72/16

A2 1818-7901 2 SYNC-DIMM 16MX72 PC100 
168-DIMM - 128 M mem

16044 KGM100X72C3/
128

MP001 E1438-00203 1 SHTF-BOTTOM COVER 28480 E1438-00203

MP002 E1438-00202 1 SHTF-TOP COVER 28480 E1438-00202

MP003 0515-1135 10 SCREW-MACH M3 x 0.5 
25MM-LG

05610 0515-1135

MP004 E1438-40601 1 GSKT-RFI-FRT PNL 28480 E1438-40601

MP005 E1485-40601 2 GSKT-RFI-BTTM CVR 28480 E1485-40601

MP006 8160-0686 2 RFI STRIP-FINGERS 03647 00786-185

MP007 8160-0634 0.4 RFI STRIP-FINGERS 03647 0097-0611

MP008 E1438-00204 1 FRONT PANEL ‘E1438’ VXI 28480 E1438-00204

MP009 E1400-84308 1 PLT-NAME ‘HP’ LOGO 28480 E1400-84308

MP010 E1400-84307 1 PLT-NAME VXI BUS 28480 E1400-84307

MP011 E1400-45101 1 MOLD - TOP 28480 E140045101

MP012 E1400-45102 1 MOLD - BOTTOM 28480 E140045102

MP013 E1400-00610 2 SCR-ASM SHLDR 28480 E1400-00610

MP014 E1400-45011 1 MOLD LBUS-ECL/ECL 28480 E1400-45011

MP015 E1400-45009 1 MOLD BTTM LOGO BASE 28480 E1400-45009

MP016 0515-0664 2 SCREW MACHINE ASSEMBLY
M3 X 0.5 12MM-LG

07606 0515-0064

MP017 0515-2733 2 SCREW SPCL M2.5 X 0.45
17MM-LG PAN-HD

13962 0515-2733

MP018 E1400-40104 2 CAST 28480 E1400-40104

MP019 2190-0068 3 WASHER-LK INTL T 
1/2 IN .505-IN-ID

07606 1924-02NP

MP020 2950-0154 3 NUT-HEX-DBL-CHAM 
1/2-28-THD .078-IN-THK

04605 2950-0154

MP021 2190-0124 4 WASHER-LK INTL T
NO. 10 .195-IN-ID

04637 500222

MP022 2950-0078 4 NUT-HEX-DBL-CHAN
10-32-THD .067-IN-THK

04637 500220
173



��$	� 
��������%	
��
Replaceable parts
To remove the top cover
174



��$	� 
��������%	
��
Replaceable parts
To remove the A1, A2 assemblies
175



��$	� 
��������%	
��
Replaceable parts
176



��

HP E1438A

Technical Specifications 100 MSa/s Digitizer

November 1999

The HP E1438A is ideal for appli-
cation in signal acquisition and 
analysis, high resolution ATE and 
radar testing.  This single-channel 
100 MSa/s digitizer combines 
exceptional spurious-free dynamic 
range with alias-protected signal 
conditioning, center frequency 
tunable digital filtering, and a large 
signal capture memory, in a single-
wide C-size VXI module.

Abbreviations

Fs = sample rate of DAC.

Fc = cut off frequency of high 
pass or low pass filters.

dBfs = dB relative to full scale 
amplitude range.

dBc = dB relative to carrier 
amplitude.

Typical = typical, non-warranted, 
performance specification included 
to provide general product informa-
tion.

Specification Note

Specifications describe warranted 
performance over a temperature 
range of 0� to 55� C, after a 15 
minute warm up from ambient 
conditions.  Supplemental charac-
teristics identified as “typical” and 
“characteristic” provide useful 
information by giving non-war-
ranted performance parameters.  
Typical performance is applicable 
from 20� to 30� C.

$FFHVV 2YHUORDG

���0VD�V��$'&�
��),/7(5��),)2

,Q
W
H
UP
R
G
X
OH
��
�(
&
/
��

&ORFN

6\QF

([W�7ULJJHU

([W�&ORFN�5HI

$QDORJ�,Q

�9UPV��0D[



Specifications
Input Specification

Input Characteristics

BNC connector, shell grounded to chassis.

50W impedance.

dc coupled or ac coupled through 0.2 mF capacitor.

Input signal can be switched to ground.

40 MHz anti-alias filter with bypass switch.

Input Ranges

dBm 50 Ohms

 30 dBm 
 27 dBm 
 24 dBm 
 21 dBm
 18 dBm
 15 dBm 
 12 dBm 
   9 dBm
   6 dBm 
   3 dBm 
   0 dBm 
  -3 dBm 
  -6 dBm 
  -9 dBm 
-12 dBm 
-15 dBm 
-18 dBm 
-21 dBm

+30 to -21 dBm in 3 dB steps

Volts peak

10.0 Vp
7.08 Vp
5.01 Vp
3.55 Vp
2.51 Vp
1.78 Vp
1.26 Vp
891 mVp
631 mVp
447 mVp
316 mVp
224 mVp
158 mVp
112 mVp
79.4 mVp
56.2 mVp
39.8 mVp
28.2 mVp

ADC Overload Level 0 dBfs typical

Return Loss of 50 Ohm Input Impedance

0.1 to 40 MHz: > 18 dB  (1.3 VSWR)

Amplitude Accuracy
(Power measurement, at 10 MHz, 0 to -40 dBfs)

Alias filter on: ± 0.7 dB

Flatness 
(dB relative to 10 MHz, excluding digital filter response)

Alias filter on, freq < 40 MHz: 
Alias filter off, freq < 40 MHz:
Alias filter off, at 100 MHz: 

± 1.0 dB
± 2.0 dB
-18 dB (typical)

DC Offset

Auto-zero accuracy: 
Temperature drift: 

± 2 %fs (typical)
< ± 0.1 mV / �C (typical) 

Input Bias Current < 50 mA (typical)

Anti Alias Filter Stopband Rejection
(60 MHz to 200 MHz, typical value for +27 and 
+30 dBm ranges)

> 90 dB

Signal-to-Noise Ratio
(full scale input, full bandwidth, excluding distortion.  See 
noise, distortion and spur specs)

Alias filter on:
Alias filter off:

> 60 dB (typical)
> 55 dB (typical)
2 of 8



Note 1. Phase noise and sidebands performance at frequency 
offsets of less than 20 kHz may be degraded by noise and ripple 
on the VXI power supplies.

Note 2.  Specifications for Dynamic Range, Spurious Responses
and Sidebands require the mainframe containing the HP E1438 to 
have Option 918 (connector shields E1400-80920) installed.  In 
addition, all modules in the mainframe must comply with the VXI 1.4 
specification for ECL trigger lines, the 10 MHz VXI system clock must 
be turned off, and the HP E1438 External Clock input must be 
disconnected when not being used.  Dynamic range specifications 
require 24-bit data resolution.

Input Noise Density
(Alias filter on, internal sample clock)

100 kHz to 40 MHz: 
10 kHz to 100 kHz: 
1 kHz to 10 kHz: 
100 Hz to 1 kHz: 

Sensitivity:

< -133 dBfs/Hz
< -131 dBfs/Hz
< -125 dBfs/Hz
< (-95 -10 LOG(f) ) dBfs/Hz

< -155 dBm/Hz (typical)

Residual Responses
(with 50W termination at input connector, 2 kHz to 
40 MHz)

< -90 dBfs

Harmonic Distortion, Aliased Harmonic Distortion, and 
Spurious Responses.

Input signals > -10 dBfs: 
Input signals -10 to -20 dBfs: 
Input signals < -20 dBfs: 

< -65 dBc
< -70 dBc
< -70 dBc or < -90 dBfs

Intermodulation Distortion
(Two in-band signals 1 MHz apart.  Measured in dBc, 
relative to one signal.)

0 to 30 MHz input signals:
   each signal -6 to -14 dBfs: 
   each signal -14 to -20 dBfs: 
   each signal < -20 dBfs:

30 to 40 MHz input signals:
   each signal -6 to -14 dBfs: 
   each signal -14 to -23 dBfs: 
   each signal < -23 dBfs: 

3rd Order products, each input -16 dBfs:  

< -65 dBc
< -70 dBc
< -70 dBc or < -90 dBfs

< -62 dBc
< -67 dBc
< -67 dBc or < -90 dBfs

-85 dBc (typical)

Phase Noise Density
(single sideband power density of 10 MHz signal,  
<0.05 G vibration, absolute or relative.  Block data 
transfer mode, see Note 1)

Df = 10 kHz: 
Df = 1 kHz: 
Df = 100 Hz:

< -128 dBc/Hz (typical)
< -120 dBc/Hz (typical)
< -110 dBc/Hz (typical)

Discrete Sidebands
(5 Hz to 100 kHz Df, see Notes 1 and 2)

Df  > 20 kHz: 
Df  < 20 kHz: 
Inter-module clock via VXI lines:  

< -90 dBc
< -90 dBc (typical, Note 1)
< -80 dBc (typical)

.

3 of 8



Sample Clock and DSP Specifications

Regulatory Compliance

Environmental

Clock Sources

Internal sample clock frequency: 
External reference for internal clock:
External sample clock frequency range: 

100 MSa/s or 102.4 MSa/s (program control)
10 MHz for 100 MSa/s,  10.24 MHz for 102.4 MSa/s
10 MHz  to 102.4 MHz

Internal Clock Specifications

Frequency accuracy, 0 to 40� C: 
Frequency accuracy, 40 to 55° C: 
External reference lock range: 

± 7 ppm
± 10 ppm
± 6 ppm (typical)

Clock Input/Output Characteristics

External sample clock/reference input:

Trigger input: 

Inter-module front panel  clock/sync: 
Inter-module VXI backplane clock/Sync: 
10 MHz reference output : 

BNC connector.  ac-coupled comparator with 1 KW 
impedance.  Accepts TTL, ECL, or > -6 dBm sine waves

BNC connector.  ac-coupled comparator with 1 KW 
impedance.  Detects pulses > 300 ns with edges 
> 100 mV 

SMB connector,  ECL-10K compatible.
VXI backplane ECLTRG lines.
SMB connector +8 dBm 

Multi-module Sampling Skew

Within mainframe, uncorrected: 
Between mainframes, 1m cable, uncorrected: 
Resolution of correction: 

< 10 ns (typical).
< 25 ns (typical)
 5 ps (nominal)

Digital Decimation Filters 17 octave steps  (40 MHz to 305 Hz),
< 0.215 dB ripple, software correctable

Digital Local Oscillator < 0.01 Hz tuning resolution

Safety Standards Designed for compliance to EN 61010-1(1993)

Radiated Emissions and Immunity EN 61326-1
(see Note 2, page 3)

Operating Restrictions

Maximum altitude

Ambient Tempture
Humidity

4600m,  above 2285m derate operating temperature by 
-3.6° C per 1000m 
0 to 55° C
10% to 90% at 40° C, non-condensing
4 of 8



Typical Performance Charts

The following charts are included as supplemental, 
non-warranted characteristics)
Performance Benchmarks
(Benchmarks are included as supplemental, non-warranted characteristics)

VXI/VME continous data transfer                      2.2 MBytes/s
rate (From E1438A to MXI-II VXI 
controller, D32 VME word size)

Local bus data transfer rate                               66 MBytes/s
(From E1438A to ideal consumer)

Library function control of module
(MXI-II VXI controller)

   Measurement start:                                          8.5 ms
   center frequency change (raw):                       600 ms

Harmonic Distortion

Harmonic Distortion performance with a -25 dBm 13 MHz signal on the -15 dBm 
range

Intermodulation Distortion

Intermodulation Distortion performance with two -14 dBfs tones near 30 MHz on 
the -15 dBm range.

Response vs. Frequency - Pass Band

C h  1  S p e c t ru m

D is to r t io n  S p e c if ic a t io n

-10  d B  F u ll  S c a le

-7 0  d B c

-1 5

2 0 .0 /d iv

-11 5

d B m

0  H z 10 .0  M H z /d iv 5 0  M H z

C h  1  S p e c t ru m

-8 5  d B c  3 rd  (t y p ic a l)

-1 4  d B  F u ll  S c a le

-7 0  d B c  S p e c.

-1 5

2 5 .0 /d iv

-1 4 0

d B m

2 7  M H z 1 .0  M H z/d iv 3 2  M H z

$OLDV�)LOWHU�2Q
$OLDV�)LOWHU�2II
5 of 8



Filter Characteristics for Analog Anti Alias Filter, Magnitude (dB) vs. Frequency (MHz)

Analog Anti Alias Filter Group Delay vs. Frequency

Input Noise Performance

���G%�

GLY

�

-���

� ������0+]�GLY

5 04 03 02 0100

A lia s  F il t e r  O n
A lia s  F il t e r  O ff

F re q u e n cy  (M H z )

1 2 0

 8 0

 4 0

0

De
la

y 
(n

s)

1 6 0

            H Z

dB
fs

/H
z

10 0 10 0 0 10 0 0 0 10 0 0 0 0 10 0 0 0 0 0
-1 4 0

-1 3 5

-1 3 0

-1 2 5

-1 2 0

-11 5

-110

S p e c
Ty p ic a l  Pe rf o r m a n c e

X

6 of 8



Filter Characteristics for Low-pass 

Digtal Filter Without Decimation, 

sigBw=3
fs = output sample rate

Magnitude (dB) vs Frequency (f/fs) Magnitude (dB) vs Frequency (f/fs

Delay (samples) vs Frequency (f/fs) Response vs Time (sample) (normalized to step size)

Response vs Time (sample) (normalized to step size)

����G%�GLY

�
����

���

���
������GLY

�

�&��'(�
)

&
*�+&

�&

,&-�(�
)

&

&.��(�
)

&
&

�.�

�&+�(�
)

�(�
)

++

&
,

&.�
&.&��(�
)

�&��'(�
)

�&

&
*�+&

&

&.�
&.&��(�
)
7 of 8



gilent Technolo-

oducts, applica-

rrent sales 

 site, http://www.

 can also con-

nters and ask 

t representative.

nter

Inc.

tion

d.
er
hi,

uarters
 #950

 Pty Ltd..

ralia

nd)

’s Road

 change.

echnologies, Inc.

��
For more information on A

gies test & measurement pr

tions, services, and for a cu

office listing, visit our web

agilent.com/find/tmdir.  You

tact one of the following ce

for a test and measuremen

United States:

Agilent Technologies
Test and Measurement Call Ce
P.O. Box 4026
Englewood, CO 80155-4026
(tel) 1 800 452 4844

Canada:

Agilent Technologies Canada 
5150 Spectrum Way
Mississauga, Ontario
L4W 5G1
(tel) 1 877 894 4414

Europe:

Agilent Technologies
Test & Measurement
European Marketing Organiza
P.O. Box 999
1180 AZ Amstelveen
The Netherlands
(tel)(31 20) 547-9999

Japan:

Agilent Technologies Japan Lt
Measurement Assistance Cent
9-1, Takakura-Cho, Hachioji-S
Tokyo 192,-8510 Japan
(tel) (81) 426 56-7832
(fax) (81) 426 56-7840

Latin America:

Agilent Technologies
Latin American Region Headq
5200 Blue Lagoon Drive, Suite
Miami, Florida 33126 U.S.A.
(tel)  (305) 267 4245
(fax) (305) 267 4286

Australia/New Zealand:

Agilent Technologies Australia
347 Burwood Highway
Forest Hill, Victoria 3131 Aust
(tel) 1 800 629 485  (Australia)
(fax) (61 3)  9272 0749
(tel) 0 800 738 378  (New Zeala
(fax) (64 4)  802 6881

Asia Pacific:

Agilent Technologies
24/F, Cityplaza One, 1111 King
Taikoo Shing, Hong Kong 
(tel) (852) 3197-7777
(fax) (852) 2506 9284

Technical data is subject to

Copyright © 1999 Agilent T

Printed in USA 11/99

5968-8233E

General

Warranty

This product is distributed, warranted, 
and supported by Agilent Technologies.

The HP E1438A comes with a 3 year 
warranty.  During that period, the unit
will either be replaced or repaired, at 
Agilent Technologies option, and 
returned to the customer without 
charge.

Related Literature

HP Test System and VXI 
Products Catalog
p/n 5968-3698EUS
p/n 5968-3698EN
p/n 5968-5609E

VXI Standard Information

Conforms to VXI revision 1.4. See Note 1,
page 3 concerning section B.8.6, Conducted 
Susceptibility.

C-size, single slot width.

Register based programming.

“Slave” Data Transfer Bus functionality.

A16 address capability.

D16/D32 data capability.

Local Bus capability

Requires ECLTRG0 and ECLTRG1 lines for
module synchronization.

VXI Power Requirements

  +5    V:
  –5.2 V: 
  –2    V: 
+12   V: 
–12    V:
+24    V:
–24   V:
  +5   V Standby:

dc Current              Dynamic Current

4.3 A                                0.3 A
2.9 A                                0.1 A
0.7 A                                0.1 A
0.6 A                                0.3 A
0.3 A                                0.02 A
0.04 A                              0.02 A
0.04 A                              0.02 A
0.0 A                                0.0 A

VXI Cooling Requirements 

For 10� C rise:
For 15� C rise: 

3.3 liters/second, 0.67 mm H2O
2.2 liters/second, 0.30 mm H2O

Warm-up Time 15 Minutes

Calibration Interval 1 Year (no field adjustments)



!������1

anti-alias filter An analog low pass filter inserted the signal path to 

eliminate undesirable frequency components which 

appear under the alias of another (baseband) frequency. 

For more information, see Spectrum and Network 

Measurements available through your Hewlett-Packard 

Sales Office.

baseband A band in the frequency spectrum that begins at zero. In 

contrast a zoomed band is centered on a specific center 

frequency.

block mode A mode in which the HP E1438A stops taking data as soon 

as a block of data has been collected.

block size The number of sample points in a block of data. For 

complex data, block size is the number of complex data 

pairs per data block.

continuous mode A mode in which the HP E1438A collects data 

continuously. It does not stop taking data unless the 

FIFO overflows.

decimation filter A digital filter that simultaneously decreases the 

bandwidth of the signal and decreases the sample rate. 

The digital filter provides alias protection and increases 

frequency resolution. For more information, see 

Spectrum and Network Measurements available through 

your Hewlett-Packard Sales Office.

FIFO A First In, First Out buffer and controller used to 

transmit data.

LO Local oscillator

VCXO Voltage controlled crystal oscillator

zoom Selects a frequency span around a specified center 

frequency. This is also known as band selectable 

operation.





INDEX
�
ac coupling, selecting� 95 

ADC, circuit description� 164 

address, module

See logical address

age1438_adc_clock� 51 

age1438_adc_clock_get� 51 

age1438_adc_divider� 52 

age1438_adc_divider_get� 52 

age1438_attrib_get� 53 

age1438_cal_get� 54 

age1438_clock_fs� 55 

age1438_clock_fs_get� 55 

age1438_clock_recover� 56 

age1438_clock_setup� 57 

age1438_clock_setup_get� 57 

age1438_close� 63 

age1438_data_blocksize� 66 

age1438_data_blocksize_get� 66 

age1438_data_delay� 66 

age1438_data_delay_get� 66 

age1438_data_memsize_get� 64 

age1438_data_mode� 66 

age1438_data_mode_get� 66 

age1438_data_port� 66 

age1438_data_port_get� 66 

age1438_data_resolution� 66 

age1438_data_resolution_get� 66 

age1438_data_scale_get� 65 

age1438_data_setup� 66 

age1438_data_type� 66 

age1438_data_type_get� 66 

age1438_data_xfersize� 71 

age1438_data_xfersize_get� 71 

age1438_driver_debug_level� 72 

age1438_driver_debug_level_get� 72 

age1438_error_message� 74 

age1438_error_query� 75 

age1438_filter_bw� 76 

age1438_filter_bw_get� 76 

age1438_filter_decimate� 76 

age1438_filter_decimate_get� 76 

age1438_filter_setup� 76 

age1438_filter_sync� 79 

age1438_frequency_center� 83 

age1438_frequency_center_get� 83 

age1438_frequency_center_raw� 81 

age1438_frequency_center_raw_get� 81 

age1438_frequency_cmplxdc� 83 

age1438_frequency_cmplxdc_get� 83 

age1438_frequency_setup� 83 

age1438_frequency_sync� 83 

age1438_frequency_sync_get� 83 

age1438_front_panel_clock_input� 86 

age1438_front_panel_clock_input_get� 86 

age1438_init� 87 

age1438_input_alias_filter� 95 

age1438_input_alias_filter_get� 95 

age1438_input_autozero� 89 

age1438_input_coupling� 95 

age1438_input_coupling_get� 95 

age1438_input_offset� 90 

age1438_input_offset_get� 90 

age1438_input_offset_save� 91 

age1438_input_range� 95 

age1438_input_range_auto� 92 

age1438_input_range_convert� 93 

age1438_input_range_get� 95 

age1438_input_setup� 95 

age1438_input_signal� 95 

age1438_input_signal_get� 95 

age1438_interrupt_mask_get� 99 

age1438_interrupt_priority_get� 99 

age1438_interrupt_restore� 98 

age1438_interrupt_setup� 99 

age1438_lbus_mode� 101 

age1438_lbus_mode_get� 101 

age1438_lbus_reset� 103 

age1438_lbus_reset_get� 103 

age1438_meas_control� 105 

age1438_meas_init� 108 

age1438_meas_start� 109 

age1438_options_get� 110 

age1438_product_id_get� 111 

age1438_read� 112 

age1438_read_raw� 115 

age1438_read64� 112 

age1438_reference_clock� 118 

age1438_reference_clock_get� 118 

age1438_reference_prescaler� 119 

age1438_reference_prescaler_get� 119 

age1438_reset� 120 

age1438_reset_hard� 121 

age1438_revision_query� 122 

age1438_self_test� 123 

age1438_serial_number� 125 

age1438_serial_number_get� 125 

age1438_smb_clock_output� 126 

age1438_smb_clock_output_get� 126 

age1438_state_recall� 127 



����/
age1438_state_save� 128 

age1438_status_get� 129 

age1438_sync_clock� 131 

age1438_sync_clock_get� 131 

age1438_sync_direction� 132 

age1438_sync_direction_get� 132 

age1438_sync_output� 133 

age1438_sync_output_get� 133 

age1438_trigger_adclevel� 136 

age1438_trigger_adclevel_get� 136 

age1438_trigger_delay� 136 

age1438_trigger_delay_actual_get� 134 

age1438_trigger_delay_get� 136 

age1438_trigger_gen� 136 

age1438_trigger_gen_get� 136 

age1438_trigger_maglevel� 136 

age1438_trigger_maglevel_get� 136 

age1438_trigger_phase_actual_get� 135 

age1438_trigger_setup� 136 

age1438_trigger_slope� 136 

age1438_trigger_slope_get� 136 

age1438_trigger_type� 136 

age1438_trigger_type_get� 136 

age1438_vcxo� 140 

age1438_vcxo_freq� 141 

age1438_vcxo_freq_get� 141 

age1438_vcxo_freq_preset� 142 

age1438_vcxo_get� 140 

age1438_vxi_clock_output� 143 

age1438_vxi_clock_output_get� 143 

age1438_wait� 144 

Agilent Technologies name use� iii 
alias filter

See anti-alias filter

alias protection
See anti-alias filter

analog filter

See anti-alias filter

anti-alias filter

circuit description� 164 

default� 26 

described� 26 

selecting� 76 �� 95 

using� 26 

appending data on local bus� 101 

arbitration bus, DTB� 161 

arm state, described� 23 

auto-ranging� 92 

autozero� 89 

%
backplane connections� 161 

bandwidth
control circuit description� 165 

filter selection� 76 

baseband measurements
complex� 83 

overview� 26 

block

mode, explained� 23 

size, determining� 67 

block diagram

circuit description� 163 

clock and sync� 27 

functional overview� 20 

buffer amplifier, selecting� 96 

bus transfers, data� 34 

2
C programming

overview� 21 

source library� 22 

calibration data, reading� 54 

center frequency
See Also frequency

setting� 83 

circuit description� 163 

clock

circuit description� 163 

distribution� 28 

easy setup� 57 

external reference� 30 

external sample frequency� 55 

front panel, selecting� 86 

generation� 163 

resetting� 56 

setup� 27 

sharing� 28 �� 57 �� 163 

source, specifying� 51 

sync source� 131 

synchronization� 57 

closing an instrument session� 63 

complex data output, specifying� 67 

configuring a VXI system� 12 

continuous mode,explained� 23 

control registers, circuit description� 167 

conversion, range� 93 

corrections, dc offset� 89 

coupling, input� 95 

'
data

on local bus� 101 

output, circuit description� 166 

port, selecting� 68 

data formatting
circuit description� 165 

specifying� 66 

data transfer bus� 161 

dc coupling, selecting� 95 

dc offset correction� 89 

decimation counters

synchronizing� 105 

decimation filter

and triggering� 24 

changes� 32 

circuit description� 165 

described� 26 

selecting� 76 



����/
DEVICE_NPRESENT� 12 

digital filter

See decimation filter

drivers

installing HP-UX� 11 

installing Windows� 10 

DTB arbitration bus� 161 

�
ending an instrument session� 63 

error messages

listed� 150 

reading� 74 

reading firmware� 75 

example programs
C� 16 

HP-VEE� 17 

using� 16 

Visual Basic� 16 

Windows� 14 

external

clock frequency� 55 

reference clock� 30 

trigger, selecting� 138 

3
filter bandwidth

See Also decimation filter

setting� 76 

filter decimation
See decimation filter

filtering

overview� 26 

See Also anti-alias filter

See Also decimation filter

span, See zoom measurements

firmware revision, determining� 122 

floating input, selecting� 96 

formatting data

See data formatting

frequency

center, changing� 32 

center, overview� 26 

center, setting� 83 

external sample clock� 55 

synchronizing changes� 83 

front panel

clock output� 126 

connectors� 160 

hardware� 160 

signal distribution� 29 

software� 14 

!
generating

data on local bus� 101 

interrupts� 99 

grounding� 161 

�
hardware interface� 12 

hardware reset� 121 

Hewlett-Packard name use� iii 
HP E1485, using with� 34 

HP product name� iii 
HP-UX

installing libraries� 11 

online help� 11 

programming environment� 22 

programming overview� 21 

using libraries� 15 

HP-VEE

example program� 17 

$
id, module� 87 �� 111 

idle state

described� 23 

forcing� 63 �� 105 

initializing the I/O driver� 87 

initiating

an instrument session� 87 

measurements� 105 �� 109 

input

circuit description� 164 

coupling� 95 

setup� 95 

inserting data on local bus� 101 

installing

hardware� 3 

libraries, HP-UX� 11 

memory� 175 

module� 3 

software� 10 

Windows libraries� 10 

instrument state

recalling� 127 

saving� 128 

interface, hardware� 12 

interrupt

generation� 99 

managing� 53 

mask, setting� 99 

priority, setting� 99 

invalid measurement conditions� 77 

4
local bus

backplane connections� 161 

described� 161 

resetting� 103 

selecting� 68 

setting mode� 101 

transfers� 34 �� 166 

local oscillators

phase and triggering� 135 

See Also clock� 163 

synchronizing� 105 

logical address



����/
default� 3 

selecting� 3 

-
measurement

initiating� 105 

initiating single module� 108 �� 109 

invalid conditions� 77 

states, described� 23 

measurement loop� 23 

memory
circuit description� 165 

installing� 175 

size, determining� 64 

mode

measurement� 23 

output� 66 

model number, viewing� 111 

module model number� 111 

multiple modules

managing� 24 �� 28 �� 32 �� 79 �� 83 �� 105 �� 136 �� 144 �� 
162 

triggering� 134 

�
numeric variable values� 145 

&
offset correction, dc� 89 

offset, input� 90 �� 91 

online help

HP-UX� 11 �� 11 

Windows� 13 

options, identifying� 110 

output formatting� 66 

output mode� 67 

overview

clock and sync� 27 

data transfer� 34 

frequency and filtering� 26 

measurement state sequence� 23 

programming� 21 

synchronization� 32 

�
packaging the module� 6 

paramater variable values� 145 

parts, ordering or replacing� 170 

phase

and delay in triggering� 24 

and trigger� 135 

pipelining data on local bus� 101 

port selection, data� 68 

power supplies� 161 

power-up state, forcing� 120 

prescaling clock reference� 119 

priority interrupt bus� 161 

programming overview� 21 

5
range

auto� 92 

conversion� 93 

input� 96 

raw data, scaling� 65 

reading data� 112 �� 115 

real data output, specifying� 67 

recalling instrument state� 127 

resetting

bad clock� 56 

the local bus� 103 

the module� 87 �� 120 �� 121 

resolution selection, data� 68 

return values listed� 150 

revision, firmware� 122 

revisions, driver� 10 �� 11 

6
samle rate

and decimation� 76 

sample clock frequency� 55 

sample output rate, selecting� 77 

sample rate

determining� 69 

saving instrument state� 128 

scale factor� 65 

scaled data, reading� 112 

scaling raw data� 65 

SDRAM memory� 165 

self test, performing� 123 

serial number, getting� 125 

setting the range automatically� 92 

sharing clock and sync� 28 

shipping the module� 6 

smb

clock output� 126 

connectors� 160 

connectors, terminating� 29 

state
recalling� 127 

saving� 128 

states, measurement� 23 

status register

and interrupts� 99 

bits defined� 129 

storing the module� 6 

sync

and frequency change� 83 

and measurement state� 23 

and trigger� 136 

clock source� 131 

decimation filter� 79 

direction� 132 

output, selecting� 133 

setup� 27 

sharing� 28 �� 166 

signal, asserting and releasing� 105 

synchronizing

decimation counters� 105 



����/
filter decimation� 79 

local oscillators� 105 

synchronizing measurements� 79 �� 83 �� 105 �� 136 �� 
144 

system requirements� 9 �� 21 �� 22 

 
terminating an instrument session� 63 

theory of operation� 163 

timing
See Also clock

See Also trigger

setup� 27 

signals� 162 

transfer size, determining and specifying� 71 

transmission mode, local bus� 101 

transporting the module� 6 

trigger

and decimation filtering� 24 

backplane lines� 161 

delay and phase� 24 

delay setting� 137 

delay, actual� 134 

detection, circuit description� 166 

generation, selecting� 137 

in multiple modules� 134 

level setting� 137 

lines,extending� 162 

phase, actual� 135 

slope, selecting� 138 

state� 136 

state, described� 23 

type, selecting� 138 

7
UNIX, See HP-UX

unscaled data, reading� 115 

upgrades� 10 �� 11 

utility bus� 161 

8
variable values� 145 

VEE

see HP-VEE� 17 

verifying operation� 14 

Visual Basic

example program� 16 

VME

bus transfers� 34 

port, selecting� 68 

reading data on� 112 

VXI

backplane connection� 161 

bus transfers� 34 �� 166 

interface, configuring� 12 

"
Windows

example program� 14 

installing libraries� 10 

programming overview� 21 

9
zoom measurements

and phase� 25 

and triggering� 25 

circuit description� 165 

overview� 26 

selecting� 83 

setting center frequency� 83 


	HP�E1438A 100 MSample/second ADC with Filters and FIFO User’s Guide
	Contents
	Installing the HP�E1438A
	To inspect the HP�E1438A
	To install the HP�E1438A
	To store the module
	To transport the module

	Getting Started with the HP�E1438A
	Introduction
	System Requirements
	To install the Windows VXIplug&play drivers for the HP�E1438A in Windows
	To install the HP-UX C-language drivers for the HP�E1438A in HP-UX systems:
	To use the Resource Manager
	To use the program group (Windows)
	To use the VXIplug&play Soft Front Panel (SPF)
	To use the HP-UX libraries
	To use the example programs

	Using the HP�E1438A
	HP�E1438A overview
	Programming the HP�E1438A
	The measurement loop
	Frequency and filtering
	Using clock and sync
	Managing multiple modules
	Transferring data

	HP�E1438A Programmer's Reference
	Introduction
	Functions listed by class
	Functions listed by functional group
	Functions listed alphabetically
	Equivalent numeric values for variables
	Commands which halt active measurements
	Error messages
	Default values
	VXIplug&play Syntax Quick Reference

	Module Description
	Front Panel Description
	VXI backplane connections
	Block diagram and description

	Replacing Assemblies
	Replaceable parts

	Technical Specifications
	Glossary
	INDEX

